File size: 13,137 Bytes
707db97 c6c2112 e0a575e b9a15d9 707db97 e0a575e 707db97 e0a575e 674515d e0a575e 284767f e0a575e b9a15d9 e0a575e b9a15d9 e0a575e 707db97 e0a575e 674515d e0a575e 674515d e0a575e b9a15d9 e0a575e 674515d e0a575e b9a15d9 e0a575e 674515d b9a15d9 e0a575e cea53ee b9a15d9 e0a575e b9a15d9 e0a575e cea53ee e0a575e b9a15d9 e0a575e b9a15d9 e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e b9a15d9 e0a575e b9a15d9 e0a575e 674515d e0a575e 674515d e0a575e 707db97 e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e b9a15d9 e0a575e b9a15d9 e0a575e b9a15d9 e0a575e b9a15d9 e0a575e b9a15d9 e0a575e b9a15d9 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 674515d e0a575e 284767f e0a575e 674515d e0a575e 674515d 707db97 674515d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
import math
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
# Load model and tokenizer
model_ids = {
"ERNIE-4.5-Base-PT": "baidu/ERNIE-4.5-0.3B-Base-PT",
"ERNIE-4.5-PT": "baidu/ERNIE-4.5-0.3B-PT"
}
tokenizers = {
name: AutoTokenizer.from_pretrained(path)
for name, path in model_ids.items()
}
models = {
name: AutoModelForCausalLM.from_pretrained(path).eval()
for name, path in model_ids.items()
}
def calculate_token_log_probabilities(text, model_name):
"""Calculate log probability for each token and total log probability."""
tokenizer = tokenizers[model_name]
model = models[model_name]
# Tokenize input
inputs = tokenizer(text, return_tensors="pt")
input_ids = inputs["input_ids"]
# Get model output logits
outputs = model(**inputs)
shift_logits = outputs.logits[:, :-1, :] # Align prediction with target
shift_labels = input_ids[:, 1:] # Shift labels to match predictions
# Compute log probabilities
log_probs = F.log_softmax(shift_logits, dim=-1)
token_log_probs = log_probs.gather(2, shift_labels.unsqueeze(-1)).squeeze(-1)
# Convert to list and get corresponding tokens
token_log_probs = token_log_probs[0].tolist()
tokens = tokenizer.convert_ids_to_tokens(shift_labels[0])
# Calculate total log probability
total_log_prob = sum(token_log_probs)
return token_log_probs, tokens, total_log_prob
def create_analysis_visualization(tokens, token_log_probs, total_log_prob, model_name):
"""Create visualization components for token analysis."""
# Create DataFrame for token analysis
df_data = []
for token, log_prob in zip(tokens, token_log_probs):
prob = math.exp(log_prob)
df_data.append({
"Token": token,
"Log Probability": f"{log_prob:.4f}",
"Probability": f"{prob:.4f}",
"Probability (%)": f"{prob*100:.2f}%"
})
df = pd.DataFrame(df_data)
# Create bar chart for token probabilities
fig = go.Figure()
fig.add_trace(go.Bar(
x=tokens,
y=[math.exp(lp) for lp in token_log_probs],
text=[f"{math.exp(lp):.3f}" for lp in token_log_probs],
textposition='auto',
marker_color='royalblue',
name=model_name
))
fig.update_layout(
title=f"Token Probability Distribution - {model_name}",
xaxis_title="Token",
yaxis_title="Probability",
yaxis=dict(tickformat='.0%', range=[0, 1.05]),
height=400
)
return df, fig
def analyze_text_both_models(text):
"""Analyze text with both models and return visualization components."""
if not text.strip():
# Return empty components for both models
return (None, None, "⚠️ Please enter some text to analyze",
None, None, "⚠️ Please enter some text to analyze",
None, "⚠️ Please enter some text to analyze")
results = {}
# Analyze with both models
for model_name in model_ids:
token_log_probs, tokens, total_log_prob = calculate_token_log_probabilities(text, model_name)
# Create visualization components
df, fig = create_analysis_visualization(tokens, token_log_probs, total_log_prob, model_name)
# Create summary text
avg_prob = math.exp(total_log_prob / len(token_log_probs)) if token_log_probs else 0
geo_mean_prob = math.exp(total_log_prob / len(token_log_probs)) if token_log_probs else 0
summary = (
f"## Analysis Summary - {model_name}\n\n"
f"**Total Log Probability**: {total_log_prob:.4f}\n"
f"**Sum of Individual Log Probs**: {sum(token_log_probs):.4f}\n"
f"**Verification**: {'✓ Match' if abs(total_log_prob - sum(token_log_probs)) < 1e-10 else '✗ Mismatch'}\n\n"
f"**Average Token Probability**: {avg_prob:.4f} ({avg_prob*100:.2f}%)\n"
f"**Geometric Mean of Probabilities**: {geo_mean_prob:.4f} ({geo_mean_prob*100:.2f}%)\n\n"
f"### Interpretation\n"
f"- Total Log Probability is the sum of individual token log probabilities\n"
f"- Higher values (closer to 0) indicate higher model confidence\n"
f"- The first token has no prediction (no preceding context)\n"
f"- Each token's probability shows how confident the model was in predicting it"
)
results[model_name] = {
"df": df,
"fig": fig,
"summary": summary,
"total_log_prob": total_log_prob,
"token_log_probs": token_log_probs,
"tokens": tokens
}
# Create comparison chart
comparison_fig = go.Figure()
# Add bars for both models
base_model = "ERNIE-4.5-Base-PT"
pt_model = "ERNIE-4.5-PT"
# Ensure both models have the same tokens for comparison
if results[base_model]["tokens"] == results[pt_model]["tokens"]:
tokens = results[base_model]["tokens"]
comparison_fig.add_trace(go.Bar(
name=base_model,
x=tokens,
y=[math.exp(lp) for lp in results[base_model]["token_log_probs"]],
text=[f"{math.exp(lp):.3f}" for lp in results[base_model]["token_log_probs"]],
textposition='auto',
marker_color='royalblue'
))
comparison_fig.add_trace(go.Bar(
name=pt_model,
x=tokens,
y=[math.exp(lp) for lp in results[pt_model]["token_log_probs"]],
text=[f"{math.exp(lp):.3f}" for lp in results[pt_model]["token_log_probs"]],
textposition='auto',
marker_color='lightseagreen'
))
comparison_fig.update_layout(
title="Model Comparison: Token Probability Distribution",
xaxis_title="Token",
yaxis_title="Probability",
yaxis=dict(tickformat='.0%', range=[0, 1.05]),
barmode='group',
height=400
)
else:
# If tokens are different, create separate subplots
comparison_fig = make_subplots(
rows=2, cols=1,
subplot_titles=(base_model, pt_model),
vertical_spacing=0.1
)
# Add Base-PT model
comparison_fig.add_trace(
go.Bar(
x=results[base_model]["tokens"],
y=[math.exp(lp) for lp in results[base_model]["token_log_probs"]],
text=[f"{math.exp(lp):.3f}" for lp in results[base_model]["token_log_probs"]],
textposition='auto',
marker_color='royalblue',
name=base_model
),
row=1, col=1
)
# Add PT model
comparison_fig.add_trace(
go.Bar(
x=results[pt_model]["tokens"],
y=[math.exp(lp) for lp in results[pt_model]["token_log_probs"]],
text=[f"{math.exp(lp):.3f}" for lp in results[pt_model]["token_log_probs"]],
textposition='auto',
marker_color='lightseagreen',
name=pt_model
),
row=2, col=1
)
comparison_fig.update_layout(
title="Model Comparison: Token Probability Distribution",
height=600,
showlegend=False
)
# Create comparison summary
base_total = results[base_model]["total_log_prob"]
pt_total = results[pt_model]["total_log_prob"]
better_model = base_model if base_total > pt_total else pt_model
difference = abs(base_total - pt_total)
comparison_summary = (
f"## Model Comparison Summary\n\n"
f"**Total Log Probability**:\n"
f"- {base_model}: {base_total:.4f}\n"
f"- {pt_model}: {pt_total:.4f}\n\n"
f"**Higher Confidence Model**: {better_model}\n"
f"Difference: {difference:.4f}\n\n"
f"### Interpretation\n"
f"- The model with the higher Total Log Probability is more confident in predicting the input text\n"
f"- Log probability closer to 0 (less negative) indicates higher model confidence\n"
f"- {base_model} is the base model while {pt_model} is instruction-tuned"
)
return (
results[base_model]["df"],
results[base_model]["fig"],
results[base_model]["summary"],
results[pt_model]["df"],
results[pt_model]["fig"],
results[pt_model]["summary"],
comparison_fig,
comparison_summary
)
# Create Gradio interface with side-by-side comparison
with gr.Blocks(title="Token Log Probability Analyzer - Model Comparison") as demo:
gr.Markdown(
"""
# 🔍 Token Log Probability Analyzer - Model Comparison
Compare how two ERNIE models predict each token in your text with detailed log probability breakdown.
"""
)
with gr.Row():
text_input = gr.Textbox(
label="Input Text",
placeholder="Enter text to analyze (e.g., 'Hello, World!')",
value="Hello, World!"
)
with gr.Row():
analyze_btn = gr.Button("Analyze Both Models", variant="primary", size="lg")
# Model comparison section
with gr.Row():
with gr.Column():
comparison_summary_output = gr.Markdown(label="Model Comparison Summary")
with gr.Row():
comparison_chart_output = gr.Plot(label="Model Comparison Chart")
# Side-by-side model results
with gr.Row():
# Left column: ERNIE-4.5-Base-PT
with gr.Column():
gr.Markdown("### ERNIE-4.5-Base-PT")
base_summary_output = gr.Markdown(label="Base Model Summary")
base_table_output = gr.DataFrame(
label="Token Analysis",
interactive=False,
wrap=True
)
base_chart_output = gr.Plot(label="Token Probability Chart")
# Right column: ERNIE-4.5-PT
with gr.Column():
gr.Markdown("### ERNIE-4.5-PT")
pt_summary_output = gr.Markdown(label="PT Model Summary")
pt_table_output = gr.DataFrame(
label="Token Analysis",
interactive=False,
wrap=True
)
pt_chart_output = gr.Plot(label="Token Probability Chart")
# Examples section
gr.Examples(
examples=[
["Hello, World!"],
["The quick brown fox jumps over the lazy dog."],
["Artificial intelligence will transform our society."],
["What is the meaning of life?"]
],
inputs=[text_input],
label="Try these examples:"
)
# Footer with explanation
gr.Markdown(
"""
## How to Interpret Results
This interface compares two ERNIE models side by side:
1. **ERNIE-4.5-Base-PT** (left): Base model, better at general language patterns
2. **ERNIE-4.5-PT** (right): Instruction-tuned model, better at following complex instructions
### Analysis Components
For each model, you'll see:
- **Summary**: Key metrics including Total Log Probability and average token probability
- **Token Analysis Table**: Detailed breakdown of each token's log probability and probability
- **Token Probability Chart**: Visual representation of each token's prediction probability
### Model Comparison
- **Model Comparison Summary**: Shows which model has higher overall confidence
- **Model Comparison Chart**: Side-by-side visualization of token probabilities
### Key Concepts
- **Log Probability**:
- Ranges from -∞ to 0
- Closer to 0 = higher model confidence
- Used instead of raw probability to avoid numerical underflow
- **Total Log Probability**:
- Sum of individual token log probabilities
- Measures overall model confidence in the entire sequence
- Allows comparison between different models
- **Why Compare Models?**:
- Base models may be better at general language
- Instruction-tuned models may be better at specific tasks
- Different models have different strengths for different types of text
"""
)
# Set up event handler
analyze_btn.click(
fn=analyze_text_both_models,
inputs=[text_input],
outputs=[
base_table_output, base_chart_output, base_summary_output,
pt_table_output, pt_chart_output, pt_summary_output,
comparison_chart_output, comparison_summary_output
]
)
if __name__ == "__main__":
demo.launch() |