|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import hashlib |
|
|
import itertools |
|
|
import logging |
|
|
import math |
|
|
import os |
|
|
from contextlib import nullcontext |
|
|
from pathlib import Path |
|
|
|
|
|
import datasets |
|
|
import diffusers |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import torch.utils.checkpoint |
|
|
import transformers |
|
|
from accelerate import Accelerator |
|
|
from accelerate.logging import get_logger |
|
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
|
from diffusers import ( |
|
|
AutoencoderKL, |
|
|
DDIMScheduler, |
|
|
DiffusionPipeline, |
|
|
DPMSolverMultistepScheduler, |
|
|
UNet2DConditionModel, |
|
|
) |
|
|
from diffusers.optimization import get_scheduler |
|
|
from diffusers.utils import check_min_version |
|
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
from huggingface_hub import Repository |
|
|
from tqdm.auto import tqdm |
|
|
from transformers import AutoTokenizer |
|
|
from utils.args_loader import ( |
|
|
get_full_repo_name, |
|
|
import_model_class_from_model_name_or_path, |
|
|
parse_args, |
|
|
) |
|
|
from utils.dataset import DreamBoothDataset, PromptDataset, collate_fn |
|
|
from utils.tracemalloc import TorchTracemalloc, b2mb |
|
|
|
|
|
from peft import BOFTConfig, get_peft_model |
|
|
|
|
|
|
|
|
|
|
|
check_min_version("0.16.0.dev0") |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
UNET_TARGET_MODULES = ["to_q", "to_v", "to_k", "query", "value", "key", "to_out.0", "add_k_proj", "add_v_proj"] |
|
|
TEXT_ENCODER_TARGET_MODULES = ["q_proj", "v_proj"] |
|
|
|
|
|
|
|
|
def save_adaptor(accelerator, step, unet, text_encoder, args): |
|
|
unwarpped_unet = accelerator.unwrap_model(unet) |
|
|
unwarpped_unet.save_pretrained( |
|
|
os.path.join(args.output_dir, f"unet/{step}"), state_dict=accelerator.get_state_dict(unet) |
|
|
) |
|
|
if args.train_text_encoder: |
|
|
unwarpped_text_encoder = accelerator.unwrap_model(text_encoder) |
|
|
unwarpped_text_encoder.save_pretrained( |
|
|
os.path.join(args.output_dir, f"text_encoder/{step}"), |
|
|
state_dict=accelerator.get_state_dict(text_encoder), |
|
|
) |
|
|
|
|
|
|
|
|
def main(args): |
|
|
validation_prompts = list(filter(None, args.validation_prompt[0].split("."))) |
|
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
|
|
|
accelerator = Accelerator( |
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
|
mixed_precision=args.mixed_precision, |
|
|
log_with=args.report_to, |
|
|
project_dir=accelerator_project_config, |
|
|
) |
|
|
if args.report_to == "wandb": |
|
|
import wandb |
|
|
|
|
|
wandb_init = { |
|
|
"wandb": { |
|
|
"name": args.wandb_run_name, |
|
|
"mode": "online", |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: |
|
|
raise ValueError( |
|
|
"Gradient accumulation is not supported when training the text encoder in distributed training. " |
|
|
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future." |
|
|
) |
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
|
level=logging.INFO, |
|
|
) |
|
|
logger.info(accelerator.state, main_process_only=False) |
|
|
if accelerator.is_local_main_process: |
|
|
datasets.utils.logging.set_verbosity_warning() |
|
|
transformers.utils.logging.set_verbosity_warning() |
|
|
diffusers.utils.logging.set_verbosity_info() |
|
|
else: |
|
|
datasets.utils.logging.set_verbosity_error() |
|
|
transformers.utils.logging.set_verbosity_error() |
|
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
|
global_seed = hash(args.wandb_run_name) % (2**32) |
|
|
set_seed(global_seed) |
|
|
|
|
|
|
|
|
if args.with_prior_preservation: |
|
|
class_images_dir = Path(args.class_data_dir) |
|
|
if not class_images_dir.exists(): |
|
|
class_images_dir.mkdir(parents=True) |
|
|
cur_class_images = len(list(class_images_dir.iterdir())) |
|
|
|
|
|
if cur_class_images < args.num_class_images: |
|
|
torch_dtype = torch.float16 if accelerator.device.type in ["cuda", "xpu"] else torch.float32 |
|
|
if args.prior_generation_precision == "fp32": |
|
|
torch_dtype = torch.float32 |
|
|
elif args.prior_generation_precision == "fp16": |
|
|
torch_dtype = torch.float16 |
|
|
elif args.prior_generation_precision == "bf16": |
|
|
torch_dtype = torch.bfloat16 |
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
torch_dtype=torch_dtype, |
|
|
safety_checker=None, |
|
|
revision=args.revision, |
|
|
) |
|
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
num_new_images = args.num_class_images - cur_class_images |
|
|
logger.info(f"Number of class images to sample: {num_new_images}.") |
|
|
|
|
|
sample_dataset = PromptDataset(args.class_prompt, num_new_images) |
|
|
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) |
|
|
|
|
|
sample_dataloader = accelerator.prepare(sample_dataloader) |
|
|
pipeline.to(accelerator.device) |
|
|
|
|
|
for example in tqdm( |
|
|
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process |
|
|
): |
|
|
images = pipeline(example["prompt"]).images |
|
|
|
|
|
for i, image in enumerate(images): |
|
|
hash_image = hashlib.sha1(image.tobytes()).hexdigest() |
|
|
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" |
|
|
image.save(image_filename) |
|
|
|
|
|
del pipeline |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
elif torch.xpu.is_available(): |
|
|
torch.xpu.empty_cache() |
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
if args.push_to_hub: |
|
|
if args.hub_model_id is None: |
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
|
else: |
|
|
repo_name = args.hub_model_id |
|
|
repo = Repository(args.output_dir, clone_from=repo_name) |
|
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
|
if "step_*" not in gitignore: |
|
|
gitignore.write("step_*\n") |
|
|
if "epoch_*" not in gitignore: |
|
|
gitignore.write("epoch_*\n") |
|
|
elif args.output_dir is not None: |
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
if args.tokenizer_name: |
|
|
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) |
|
|
elif args.pretrained_model_name_or_path: |
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
revision=args.revision, |
|
|
use_fast=False, |
|
|
) |
|
|
|
|
|
|
|
|
text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision) |
|
|
|
|
|
|
|
|
noise_scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
|
|
text_encoder = text_encoder_cls.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision |
|
|
) |
|
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) |
|
|
unet = UNet2DConditionModel.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision |
|
|
) |
|
|
|
|
|
if args.use_boft: |
|
|
config = BOFTConfig( |
|
|
boft_block_size=args.boft_block_size, |
|
|
boft_block_num=args.boft_block_num, |
|
|
boft_n_butterfly_factor=args.boft_n_butterfly_factor, |
|
|
target_modules=UNET_TARGET_MODULES, |
|
|
boft_dropout=args.boft_dropout, |
|
|
bias=args.boft_bias, |
|
|
) |
|
|
unet = get_peft_model(unet, config, adapter_name=args.wandb_run_name) |
|
|
unet.print_trainable_parameters() |
|
|
|
|
|
vae.requires_grad_(False) |
|
|
unet.train() |
|
|
|
|
|
if args.train_text_encoder and args.use_boft: |
|
|
config = BOFTConfig( |
|
|
boft_block_size=args.boft_block_size, |
|
|
boft_block_num=args.boft_block_num, |
|
|
boft_n_butterfly_factor=args.boft_n_butterfly_factor, |
|
|
target_modules=TEXT_ENCODER_TARGET_MODULES, |
|
|
boft_dropout=args.boft_dropout, |
|
|
bias=args.boft_bias, |
|
|
) |
|
|
text_encoder = get_peft_model(text_encoder, config, adapter_name=args.wandb_run_name) |
|
|
text_encoder.print_trainable_parameters() |
|
|
text_encoder.train() |
|
|
else: |
|
|
text_encoder.requires_grad_(False) |
|
|
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
|
if accelerator.mixed_precision == "fp16": |
|
|
weight_dtype = torch.float16 |
|
|
elif accelerator.mixed_precision == "bf16": |
|
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
|
unet.to(accelerator.device, dtype=weight_dtype) |
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if args.enable_xformers_memory_efficient_attention: |
|
|
if accelerator.device.type == "xpu": |
|
|
logger.warn("XPU hasn't support xformers yet, ignore it.") |
|
|
elif is_xformers_available(): |
|
|
unet.enable_xformers_memory_efficient_attention() |
|
|
else: |
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
if args.gradient_checkpointing: |
|
|
unet.enable_gradient_checkpointing() |
|
|
|
|
|
if args.train_text_encoder and not args.use_boft: |
|
|
text_encoder.gradient_checkpointing_enable() |
|
|
|
|
|
|
|
|
|
|
|
if args.allow_tf32 and torch.cuda.is_available(): |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
if args.scale_lr: |
|
|
args.learning_rate = ( |
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
|
) |
|
|
|
|
|
|
|
|
if args.use_8bit_adam: |
|
|
try: |
|
|
import bitsandbytes as bnb |
|
|
except ImportError: |
|
|
raise ImportError( |
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." |
|
|
) |
|
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit |
|
|
else: |
|
|
optimizer_class = torch.optim.AdamW |
|
|
|
|
|
|
|
|
params_to_optimize = [param for param in unet.parameters() if param.requires_grad] |
|
|
|
|
|
if args.train_text_encoder: |
|
|
params_to_optimize += [param for param in text_encoder.parameters() if param.requires_grad] |
|
|
|
|
|
optimizer = optimizer_class( |
|
|
params_to_optimize, |
|
|
lr=args.learning_rate, |
|
|
betas=(args.adam_beta1, args.adam_beta2), |
|
|
weight_decay=args.adam_weight_decay, |
|
|
eps=args.adam_epsilon, |
|
|
) |
|
|
|
|
|
|
|
|
data_path = os.path.join(os.getcwd(), "data", "dreambooth") |
|
|
if not os.path.exists(data_path): |
|
|
os.makedirs(os.path.join(os.getcwd(), "data"), exist_ok=True) |
|
|
os.system(f"git clone https://github.com/google/dreambooth.git '{data_path}'") |
|
|
|
|
|
|
|
|
train_dataset = DreamBoothDataset( |
|
|
instance_data_root=args.instance_data_dir, |
|
|
instance_prompt=args.instance_prompt, |
|
|
class_data_root=args.class_data_dir if args.with_prior_preservation else None, |
|
|
class_prompt=args.class_prompt, |
|
|
tokenizer=tokenizer, |
|
|
size=args.resolution, |
|
|
center_crop=args.center_crop, |
|
|
) |
|
|
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
|
train_dataset, |
|
|
batch_size=args.train_batch_size, |
|
|
shuffle=True, |
|
|
collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), |
|
|
num_workers=args.num_dataloader_workers, |
|
|
) |
|
|
|
|
|
|
|
|
overrode_max_train_steps = False |
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
if args.max_train_steps is None: |
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
overrode_max_train_steps = True |
|
|
|
|
|
lr_scheduler = get_scheduler( |
|
|
args.lr_scheduler, |
|
|
optimizer=optimizer, |
|
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
|
num_cycles=args.lr_num_cycles, |
|
|
power=args.lr_power, |
|
|
) |
|
|
|
|
|
|
|
|
if args.train_text_encoder: |
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
|
unet, text_encoder, optimizer, train_dataloader, lr_scheduler |
|
|
) |
|
|
else: |
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
|
unet, optimizer, train_dataloader, lr_scheduler |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
|
if accelerator.mixed_precision == "fp16": |
|
|
weight_dtype = torch.float16 |
|
|
elif accelerator.mixed_precision == "bf16": |
|
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
|
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
if not args.train_text_encoder: |
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
if overrode_max_train_steps: |
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
accelerator.init_trackers(args.wandb_project_name, config=vars(args), init_kwargs=wandb_init) |
|
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
|
|
logger.info("***** Running training *****") |
|
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}") |
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
global_step = 0 |
|
|
first_epoch = 0 |
|
|
|
|
|
|
|
|
if args.resume_from_checkpoint: |
|
|
if args.resume_from_checkpoint != "latest": |
|
|
path = os.path.basename(args.resume_from_checkpoint) |
|
|
else: |
|
|
|
|
|
dirs = os.listdir(args.output_dir) |
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
|
global_step = int(path.split("-")[1]) |
|
|
|
|
|
resume_global_step = global_step * args.gradient_accumulation_steps |
|
|
first_epoch = resume_global_step // num_update_steps_per_epoch |
|
|
resume_step = resume_global_step % num_update_steps_per_epoch |
|
|
|
|
|
|
|
|
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
|
progress_bar.set_description("Steps") |
|
|
|
|
|
if args.train_text_encoder: |
|
|
text_encoder.train() |
|
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
|
unet.train() |
|
|
|
|
|
with TorchTracemalloc() if not args.no_tracemalloc else nullcontext() as tracemalloc: |
|
|
for step, batch in enumerate(train_dataloader): |
|
|
|
|
|
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: |
|
|
if step % args.gradient_accumulation_steps == 0: |
|
|
progress_bar.update(1) |
|
|
if args.report_to == "wandb": |
|
|
accelerator.print(progress_bar) |
|
|
continue |
|
|
|
|
|
with accelerator.accumulate(unet): |
|
|
|
|
|
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() |
|
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
|
|
|
noise = torch.randn_like(latents) |
|
|
bsz = latents.shape[0] |
|
|
|
|
|
timesteps = torch.randint( |
|
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device |
|
|
) |
|
|
timesteps = timesteps.long() |
|
|
|
|
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
|
|
|
|
|
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
|
target = noise |
|
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
|
target = noise_scheduler.get_velocity(latents, noise, timesteps) |
|
|
else: |
|
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
|
|
if args.with_prior_preservation: |
|
|
|
|
|
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) |
|
|
target, target_prior = torch.chunk(target, 2, dim=0) |
|
|
|
|
|
|
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
|
|
|
|
|
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") |
|
|
|
|
|
|
|
|
loss = loss + args.prior_loss_weight * prior_loss |
|
|
else: |
|
|
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") |
|
|
|
|
|
accelerator.backward(loss) |
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
params_to_clip = ( |
|
|
itertools.chain(unet.parameters(), text_encoder.parameters()) |
|
|
if args.train_text_encoder |
|
|
else unet.parameters() |
|
|
) |
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) |
|
|
|
|
|
optimizer.step() |
|
|
lr_scheduler.step() |
|
|
optimizer.zero_grad() |
|
|
|
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
progress_bar.update(1) |
|
|
if args.report_to == "wandb": |
|
|
accelerator.print(progress_bar) |
|
|
global_step += 1 |
|
|
|
|
|
if global_step % args.checkpointing_steps == 0 and global_step != 0: |
|
|
if accelerator.is_main_process: |
|
|
save_adaptor(accelerator, global_step, unet, text_encoder, args) |
|
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
|
progress_bar.set_postfix(**logs) |
|
|
accelerator.log(logs, step=global_step) |
|
|
|
|
|
if ( |
|
|
args.validation_prompt is not None |
|
|
and (step + num_update_steps_per_epoch * epoch) % args.validation_steps == 0 |
|
|
and global_step > 10 |
|
|
): |
|
|
unet.eval() |
|
|
|
|
|
logger.info( |
|
|
f"Running validation... \n Generating {len(validation_prompts)} images with prompt:" |
|
|
f" {validation_prompts[0]}, ......" |
|
|
) |
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
safety_checker=None, |
|
|
revision=args.revision, |
|
|
) |
|
|
|
|
|
|
|
|
pipeline.unet = accelerator.unwrap_model(unet, keep_fp32_wrapper=True) |
|
|
pipeline.text_encoder = accelerator.unwrap_model(text_encoder, keep_fp32_wrapper=True) |
|
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) |
|
|
pipeline = pipeline.to(accelerator.device) |
|
|
pipeline.set_progress_bar_config(disable=True) |
|
|
|
|
|
|
|
|
if args.seed is not None: |
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) |
|
|
else: |
|
|
generator = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = [] |
|
|
val_img_dir = os.path.join( |
|
|
args.output_dir, |
|
|
f"validation/{global_step}", |
|
|
args.wandb_run_name, |
|
|
) |
|
|
os.makedirs(val_img_dir, exist_ok=True) |
|
|
|
|
|
for val_promot in validation_prompts: |
|
|
image = pipeline(val_promot, num_inference_steps=50, generator=generator).images[0] |
|
|
image.save(os.path.join(val_img_dir, f"{'_'.join(val_promot.split(' '))}.png"[1:])) |
|
|
images.append(image) |
|
|
|
|
|
for tracker in accelerator.trackers: |
|
|
if tracker.name == "tensorboard": |
|
|
np_images = np.stack([np.asarray(img) for img in images]) |
|
|
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") |
|
|
if tracker.name == "wandb": |
|
|
import wandb |
|
|
|
|
|
tracker.log( |
|
|
{ |
|
|
"validation": [ |
|
|
wandb.Image(image, caption=f"{i}: {validation_prompts[i]}") |
|
|
for i, image in enumerate(images) |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
del pipeline |
|
|
if torch.cuda.is_available(): |
|
|
torch.cuda.empty_cache() |
|
|
elif torch.xpu.is_available(): |
|
|
torch.xpu.empty_cache() |
|
|
|
|
|
if global_step >= args.max_train_steps: |
|
|
break |
|
|
|
|
|
|
|
|
if not args.no_tracemalloc: |
|
|
accelerator.print( |
|
|
f"{accelerator.device.type.upper()} Memory before entering the train : {b2mb(tracemalloc.begin)}" |
|
|
) |
|
|
accelerator.print( |
|
|
f"{accelerator.device.type.upper()} Memory consumed at the end of the train (end-begin): {tracemalloc.used}" |
|
|
) |
|
|
accelerator.print( |
|
|
f"{accelerator.device.type.upper()} Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}" |
|
|
) |
|
|
accelerator.print( |
|
|
f"{accelerator.device.type.upper()} Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" |
|
|
) |
|
|
|
|
|
accelerator.print(f"CPU Memory before entering the train : {b2mb(tracemalloc.cpu_begin)}") |
|
|
accelerator.print(f"CPU Memory consumed at the end of the train (end-begin): {tracemalloc.cpu_used}") |
|
|
accelerator.print(f"CPU Peak Memory consumed during the train (max-begin): {tracemalloc.cpu_peaked}") |
|
|
accelerator.print( |
|
|
f"CPU Total Peak Memory consumed during the train (max): {tracemalloc.cpu_peaked + b2mb(tracemalloc.cpu_begin)}" |
|
|
) |
|
|
|
|
|
if args.push_to_hub: |
|
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) |
|
|
accelerator.end_training() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = parse_args() |
|
|
main(args) |
|
|
|