Spaces:
Running
Running
| import math | |
| from typing import List, Tuple | |
| import torch | |
| import torchvision.transforms as T | |
| from PIL import Image, ImageOps | |
| from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast | |
| from transformers.processing_utils import ProcessorMixin | |
| from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, MIN_CROPS, MAX_CROPS, PROMPT, TOKENIZER | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') | |
| return best_ratio | |
| def count_tiles(orig_width, orig_height, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False): | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| # print(target_ratios) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| return target_aspect_ratio | |
| def dynamic_preprocess(image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| # print(target_ratios) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # print(target_aspect_ratio) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images, target_aspect_ratio | |
| class ImageTransform: | |
| def __init__(self, | |
| mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
| std: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
| normalize: bool = True): | |
| self.mean = mean | |
| self.std = std | |
| self.normalize = normalize | |
| transform_pipelines = [T.ToTensor()] | |
| if normalize: | |
| transform_pipelines.append(T.Normalize(mean, std)) | |
| self.transform = T.Compose(transform_pipelines) | |
| def __call__(self, pil_img: Image.Image): | |
| x = self.transform(pil_img) | |
| return x | |
| class DeepseekOCRProcessor(ProcessorMixin): | |
| tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
| attributes = ["tokenizer"] | |
| def __init__( | |
| self, | |
| tokenizer: LlamaTokenizerFast = TOKENIZER, | |
| candidate_resolutions: Tuple[Tuple[int, int]] = [[1024, 1024]], | |
| patch_size: int = 16, | |
| downsample_ratio: int = 4, | |
| image_mean: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
| image_std: Tuple[float, float, float] = (0.5, 0.5, 0.5), | |
| normalize: bool = True, | |
| image_token: str = "<image>", | |
| pad_token: str = "<|▁pad▁|>", | |
| add_special_token: bool = False, | |
| sft_format: str = "deepseek", | |
| mask_prompt: bool = True, | |
| ignore_id: int = -100, | |
| **kwargs, | |
| ): | |
| # self.candidate_resolutions = candidate_resolutions # placeholder no use | |
| self.image_size = IMAGE_SIZE | |
| self.base_size = BASE_SIZE | |
| # self.patch_size = patch_size | |
| self.patch_size = 16 | |
| self.image_mean = image_mean | |
| self.image_std = image_std | |
| self.normalize = normalize | |
| # self.downsample_ratio = downsample_ratio | |
| self.downsample_ratio = 4 | |
| self.image_transform = ImageTransform(mean=image_mean, std=image_std, normalize=normalize) | |
| self.tokenizer = tokenizer | |
| # self.tokenizer = add_special_token(tokenizer) | |
| self.tokenizer.padding_side = 'left' # must set this,padding side with make a difference in batch inference | |
| # add the pad_token as special token to use 'tokenizer.pad_token' and 'tokenizer.pad_token_id' | |
| if self.tokenizer.pad_token is None: | |
| self.tokenizer.add_special_tokens({'pad_token': pad_token}) | |
| # add image token | |
| # image_token_id = self.tokenizer.vocab.get(image_token) | |
| # if image_token_id is None: | |
| # special_tokens = [image_token] | |
| # special_tokens_dict = {"additional_special_tokens": special_tokens} | |
| # self.tokenizer.add_special_tokens(special_tokens_dict) | |
| self.image_token_id = self.tokenizer.vocab.get(image_token) | |
| # add five special tokens for grounding-related tasks | |
| # <|ref|>, <|/ref|>, <|det|>, <|/det|>, <|grounding|> | |
| # special_tokens = ['<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>'] | |
| # special_tokens_dict = {"additional_special_tokens": special_tokens} | |
| # special_tokens = ['<image>','<|ref|>', '<|/ref|>', '<|det|>', '<|/det|>', '<|grounding|>', '<td>', '</td>', '<tr>', '</tr>'] | |
| # special_tokens_dict = {"additional_special_tokens": special_tokens} | |
| # self.tokenizer.add_special_tokens(special_tokens_dict) | |
| # # add special tokens for SFT data | |
| # special_tokens = ["<|User|>", "<|Assistant|>"] | |
| # special_tokens_dict = {"additional_special_tokens": special_tokens} | |
| # self.tokenizer.add_special_tokens(special_tokens_dict) | |
| self.image_token = image_token | |
| self.pad_token = pad_token | |
| self.add_special_token = add_special_token | |
| self.sft_format = sft_format | |
| self.mask_prompt = mask_prompt | |
| self.ignore_id = ignore_id | |
| super().__init__( | |
| tokenizer, | |
| **kwargs, | |
| ) | |
| # def select_best_resolution(self, image_size): | |
| # # used for cropping | |
| # original_width, original_height = image_size | |
| # best_fit = None | |
| # max_effective_resolution = 0 | |
| # min_wasted_resolution = float("inf") | |
| # for width, height in self.candidate_resolutions: | |
| # scale = min(width / original_width, height / original_height) | |
| # downscaled_width, downscaled_height = int( | |
| # original_width * scale), int(original_height * scale) | |
| # effective_resolution = min(downscaled_width * downscaled_height, | |
| # original_width * original_height) | |
| # wasted_resolution = (width * height) - effective_resolution | |
| # if effective_resolution > max_effective_resolution or ( | |
| # effective_resolution == max_effective_resolution | |
| # and wasted_resolution < min_wasted_resolution): | |
| # max_effective_resolution = effective_resolution | |
| # min_wasted_resolution = wasted_resolution | |
| # best_fit = (width, height) | |
| # return best_fit | |
| def bos_id(self): | |
| return self.tokenizer.bos_token_id | |
| def eos_id(self): | |
| return self.tokenizer.eos_token_id | |
| def pad_id(self): | |
| return self.tokenizer.pad_token_id | |
| def encode(self, text: str, bos: bool = True, eos: bool = False): | |
| t = self.tokenizer.encode(text, add_special_tokens=False) | |
| if bos: | |
| t = [self.bos_id] + t | |
| if eos: | |
| t = t + [self.eos_id] | |
| return t | |
| def decode(self, t: List[int], **kwargs) -> str: | |
| return self.tokenizer.decode(t, **kwargs) | |
| def process_one( | |
| self, | |
| prompt: str, | |
| images: List, | |
| inference_mode: bool = True, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| prompt (str): the formatted prompt; | |
| conversations (List[Dict]): conversations with a list of messages; | |
| images (List[ImageType]): the list of images; | |
| inference_mode (bool): if True, then remove the last eos token; | |
| system_prompt (str): the system prompt; | |
| **kwargs: | |
| Returns: | |
| outputs (BaseProcessorOutput): the output of the processor, | |
| - input_ids (torch.LongTensor): [N + image tokens] | |
| - target_ids (torch.LongTensor): [N + image tokens] | |
| - pixel_values (torch.FloatTensor): [n_patches, 3, H, W] | |
| - image_id (int): the id of the image token | |
| - num_image_tokens (List[int]): the number of image tokens | |
| """ | |
| assert (prompt is not None and images is not None | |
| ), "prompt and images must be used at the same time." | |
| sft_format = prompt | |
| input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, _ = images[0] | |
| return { | |
| "input_ids": input_ids, | |
| "pixel_values": pixel_values, | |
| "images_crop": images_crop, | |
| "images_seq_mask": images_seq_mask, | |
| "images_spatial_crop": images_spatial_crop, | |
| "num_image_tokens": num_image_tokens, | |
| } | |
| # prepare = BatchFeature( | |
| # data=dict( | |
| # input_ids=input_ids, | |
| # pixel_values=pixel_values, | |
| # images_crop = images_crop, | |
| # images_seq_mask=images_seq_mask, | |
| # images_spatial_crop=images_spatial_crop, | |
| # num_image_tokens=num_image_tokens, | |
| # ), | |
| # tensor_type="pt", | |
| # ) | |
| # return prepare | |
| def __call__( | |
| self, | |
| *, | |
| prompt: str, | |
| images: List, | |
| inference_mode: bool = True, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| prompt (str): the formatted prompt; | |
| images (List[ImageType]): the list of images; | |
| inference_mode (bool): if True, then remove the last eos token; | |
| **kwargs: | |
| Returns: | |
| outputs (BaseProcessorOutput): the output of the processor, | |
| - input_ids (torch.LongTensor): [N + image tokens] | |
| - images (torch.FloatTensor): [n_images, 3, H, W] | |
| - image_id (int): the id of the image token | |
| - num_image_tokens (List[int]): the number of image tokens | |
| """ | |
| prepare = self.process_one( | |
| prompt=prompt, | |
| images=images, | |
| inference_mode=inference_mode, | |
| ) | |
| return prepare | |
| def tokenize_with_images( | |
| self, | |
| # conversation: str, | |
| images: List[Image.Image], | |
| bos: bool = True, | |
| eos: bool = True, | |
| cropping: bool = True, | |
| ): | |
| """Tokenize text with <image> tags.""" | |
| # print(conversation) | |
| conversation = PROMPT | |
| assert conversation.count(self.image_token) == len(images) | |
| text_splits = conversation.split(self.image_token) | |
| images_list, images_crop_list, images_seq_mask, images_spatial_crop = [], [], [], [] | |
| image_shapes = [] | |
| num_image_tokens = [] | |
| tokenized_str = [] | |
| # print('image: ', len(images)) | |
| for text_sep, image in zip(text_splits, images): | |
| """encode text_sep""" | |
| tokenized_sep = self.encode(text_sep, bos=False, eos=False) | |
| tokenized_str += tokenized_sep | |
| images_seq_mask += [False] * len(tokenized_sep) | |
| """select best resolution for anyres""" | |
| # if cropping: | |
| # best_width, best_height = self.select_best_resolution(image.size) | |
| # else: | |
| # best_width, best_height = self.image_size, self.image_size | |
| image_shapes.append(image.size) | |
| if image.size[0] <= 640 and image.size[1] <= 640: | |
| crop_ratio = [1, 1] | |
| else: | |
| if cropping: | |
| # print('image-size: ', image.size) | |
| # best_width, best_height = select_best_resolution(image.size, self.candidate_resolutions) | |
| # print('image ', image.size) | |
| # print('open_size:', image.size) | |
| images_crop_raw, crop_ratio = dynamic_preprocess(image, image_size=IMAGE_SIZE) | |
| # print('crop_ratio: ', crop_ratio) | |
| else: | |
| # best_width, best_height = self.image_size, self.image_size | |
| crop_ratio = [1, 1] | |
| # print(image.size, (best_width, best_height)) # check the select_best_resolutions func | |
| # print(crop_ratio) | |
| """process the global view""" | |
| # if cropping | |
| if self.image_size <= 640 and not cropping: | |
| # print('directly resize') | |
| image = image.resize((self.image_size, self.image_size)) | |
| global_view = ImageOps.pad(image, (self.base_size, self.base_size), | |
| color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
| images_list.append(self.image_transform(global_view)) | |
| """record height / width crop num""" | |
| # width_crop_num, height_crop_num = best_width // self.image_size, best_height // self.image_size | |
| num_width_tiles, num_height_tiles = crop_ratio | |
| images_spatial_crop.append([num_width_tiles, num_height_tiles]) | |
| if num_width_tiles > 1 or num_height_tiles > 1: | |
| """process the local views""" | |
| # local_view = ImageOps.pad(image, (best_width, best_height), | |
| # color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
| # for i in range(0, best_height, self.image_size): | |
| # for j in range(0, best_width, self.image_size): | |
| # images_crop_list.append( | |
| # self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) | |
| for i in range(len(images_crop_raw)): | |
| images_crop_list.append(self.image_transform(images_crop_raw[i])) | |
| # """process the global view""" | |
| # global_view = ImageOps.pad(image, (self.image_size, self.image_size), | |
| # color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
| # images_list.append(self.image_transform(global_view)) | |
| # """process the local views""" | |
| # local_view = ImageOps.pad(image, (best_width, best_height), | |
| # color=tuple(int(x * 255) for x in self.image_transform.mean)) | |
| # for i in range(0, best_height, self.image_size): | |
| # for j in range(0, best_width, self.image_size): | |
| # images_list.append( | |
| # self.image_transform(local_view.crop((j, i, j + self.image_size, i + self.image_size)))) | |
| # """add image tokens""" | |
| """add image tokens""" | |
| num_queries = math.ceil((self.image_size // self.patch_size) / self.downsample_ratio) | |
| num_queries_base = math.ceil((self.base_size // self.patch_size) / self.downsample_ratio) | |
| tokenized_image = ([self.image_token_id] * num_queries_base + [self.image_token_id]) * num_queries_base | |
| tokenized_image += [self.image_token_id] | |
| if num_width_tiles > 1 or num_height_tiles > 1: | |
| tokenized_image += ([self.image_token_id] * (num_queries * num_width_tiles) + [self.image_token_id]) * ( | |
| num_queries * num_height_tiles) | |
| tokenized_str += tokenized_image | |
| images_seq_mask += [True] * len(tokenized_image) | |
| num_image_tokens.append(len(tokenized_image)) | |
| """process the last text split""" | |
| tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False) | |
| tokenized_str += tokenized_sep | |
| images_seq_mask += [False] * len(tokenized_sep) | |
| """add the bos and eos tokens""" | |
| if bos: | |
| tokenized_str = [self.bos_id] + tokenized_str | |
| images_seq_mask = [False] + images_seq_mask | |
| if eos: | |
| tokenized_str = tokenized_str + [self.eos_id] | |
| images_seq_mask = images_seq_mask + [False] | |
| assert len(tokenized_str) == len( | |
| images_seq_mask), f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} is not equal to imags_seq_mask's length {len(images_seq_mask)}" | |
| masked_tokenized_str = [] | |
| for token_index in tokenized_str: | |
| if token_index != self.image_token_id: | |
| masked_tokenized_str.append(token_index) | |
| else: | |
| masked_tokenized_str.append(self.ignore_id) | |
| assert len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str), \ | |
| (f"tokenized_str's length {len(tokenized_str)}, input_ids' length {len(masked_tokenized_str)}, " | |
| f"imags_seq_mask's length {len(images_seq_mask)}, are not equal") | |
| input_ids = torch.LongTensor(tokenized_str) | |
| target_ids = torch.LongTensor(masked_tokenized_str) | |
| images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool) | |
| # set input_ids < 0 | input_ids == self.image_token_id as ignore_id | |
| target_ids[(input_ids < 0) | | |
| (input_ids == self.image_token_id)] = self.ignore_id | |
| input_ids[input_ids < 0] = self.pad_id | |
| inference_mode = True | |
| if inference_mode: | |
| # Remove the ending eos token | |
| assert input_ids[-1] == self.eos_id | |
| input_ids = input_ids[:-1] | |
| target_ids = target_ids[:-1] | |
| images_seq_mask = images_seq_mask[:-1] | |
| if len(images_list) == 0: | |
| pixel_values = torch.zeros((1, 3, self.base_size, self.base_size)) | |
| images_spatial_crop = torch.zeros((1, 1), dtype=torch.long) | |
| images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0) | |
| else: | |
| pixel_values = torch.stack(images_list, dim=0) | |
| images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long) | |
| if images_crop_list: | |
| images_crop = torch.stack(images_crop_list, dim=0).unsqueeze(0) | |
| else: | |
| images_crop = torch.zeros((1, 3, self.image_size, self.image_size)).unsqueeze(0) | |
| input_ids = input_ids.unsqueeze(0) | |
| return [[input_ids, pixel_values, images_crop, images_seq_mask, images_spatial_crop, num_image_tokens, image_shapes]] | |
| AutoProcessor.register("DeepseekVLV2Processor", DeepseekOCRProcessor) | |