Spaces:
Running
Running
File size: 24,373 Bytes
e8b46b5 24ad2d2 7a2fc08 24ad2d2 1055fe1 e8b46b5 24ad2d2 7a2fc08 1055fe1 e8b46b5 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 24ad2d2 7a2fc08 1055fe1 24ad2d2 1055fe1 e8b46b5 7a2fc08 1055fe1 7a2fc08 1055fe1 24ad2d2 7a2fc08 1487325 7a2fc08 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 7a2fc08 1487325 7a2fc08 1487325 7a2fc08 24ad2d2 7a2fc08 c4e2e43 7a2fc08 c4e2e43 7a2fc08 24ad2d2 c4e2e43 7a2fc08 1055fe1 24ad2d2 7a2fc08 1055fe1 7a2fc08 1055fe1 24ad2d2 7a2fc08 c4e2e43 7a2fc08 c4e2e43 7a2fc08 c4e2e43 1487325 c4e2e43 1487325 c4e2e43 24ad2d2 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 24ad2d2 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 24ad2d2 1055fe1 7a2fc08 1055fe1 24ad2d2 7a2fc08 1055fe1 7a2fc08 1055fe1 24ad2d2 7a2fc08 1487325 1055fe1 24ad2d2 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1487325 7a2fc08 1487325 24ad2d2 1487325 7a2fc08 1487325 24ad2d2 1487325 24ad2d2 1487325 24ad2d2 1487325 7a2fc08 1487325 7a2fc08 24ad2d2 1487325 24ad2d2 7a2fc08 1487325 7a2fc08 1487325 7a2fc08 1487325 24ad2d2 7a2fc08 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 e8b46b5 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 24ad2d2 1055fe1 7a2fc08 1055fe1 24ad2d2 1055fe1 7a2fc08 e8b46b5 1055fe1 24ad2d2 7a2fc08 1055fe1 7a2fc08 1055fe1 e8b46b5 7a2fc08 1055fe1 24ad2d2 7a2fc08 1055fe1 24ad2d2 1055fe1 7a2fc08 24ad2d2 e8b46b5 7a2fc08 1055fe1 7a2fc08 1055fe1 7a2fc08 1055fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
#!/usr/bin/env python3
"""
extract_red_text.py
Hardened version: preserves original logic/prints while improving header-label mapping,
robustness to missing hf_utils and better synonym handling for vehicle tables.
"""
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
# Try to reuse your hf_utils if available (non-breaking); otherwise fall back to local helpers.
try:
from hf_utils import (
is_red_font,
normalize_text,
normalize_header_text,
get_clean_text,
)
except Exception:
# Minimal compatible fallbacks if hf_utils is not present.
def normalize_text(s: str) -> str:
if not s:
return ""
s = re.sub(r"\u2013|\u2014", "-", s) # smart dashes
s = re.sub(r"[^\w\s\-\&\(\)\/:]", " ", s) # keep a small set of punctuation
s = re.sub(r"\s+", " ", s).strip()
return s
def normalize_header_text(s: str) -> str:
return normalize_text(s).upper()
def is_red_font(run):
"""Best-effort red detection fallback for when hf_utils isn't available."""
try:
col = getattr(run.font, "color", None)
if col and getattr(col, "rgb", None):
rgb = col.rgb
r, g, b = rgb[0], rgb[1], rgb[2]
if r > 150 and g < 120 and b < 120 and (r - max(g, b)) > 30:
return True
except Exception:
pass
# fallback to xml check
try:
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val'))
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
if rr > 150 and gg < 120 and bb < 120 and (rr - max(gg, bb)) > 30:
return True
except Exception:
pass
return False
def get_clean_text(elem):
return "".join(node.text for node in elem.iter() if node.tag.endswith("}t") and node.text).strip()
# Import master schemas and patterns (your file)
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
# ---------------------------------------------------------------------
# Low-level helpers (kept and hardened)
# ---------------------------------------------------------------------
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def get_table_context(tbl):
"""Return structured context for a table"""
heading = normalize_text(_prev_para_text(tbl))
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()] if tbl.rows else []
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
t = normalize_text(cell.text)
if t:
all_cells.append(t)
return {
"heading": heading,
"headers": headers,
"col0": col0,
"first_cell": first_cell,
"all_cells": all_cells,
"num_rows": len(tbl.rows),
"num_cols": len(tbl.rows[0].cells) if tbl.rows else 0,
}
def fuzzy_match_heading(heading, patterns):
"""Return True if heading fuzzy-matches any regex patterns"""
if not heading:
return False
heading_norm = heading.upper()
for pattern in patterns:
try:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
except re.error:
if pattern.upper() in heading_norm:
return True
return False
# ---------------------------------------------------------------------
# Header-to-label synonym map: improved coverage for common OCR/header variants
# ---------------------------------------------------------------------
HEADER_SYNONYMS = {
# normalized header (upper) -> canonical label in TABLE_SCHEMAS
"NO": "No.",
"NO.": "No.",
"REG NO": "Registration Number",
"REGISTRATIONNO": "Registration Number",
"REGISTRATION NUMBER": "Registration Number",
"REGISTRATION": "Registration Number",
"PRINT NAME": "Print Name",
"NHVR OR EXEMPLAR GLOBAL AUDITOR REGISTRATION NUMBER": "NHVR or Exemplar Global Auditor Registration Number",
"ROADWORTHINESS CERTIFICATES": "Roadworthiness Certificates",
"ROADWORTHINESS CERTIFICATES (APPLICABLE FOR ENTRY AUDIT)": "Roadworthiness Certificates",
"MAINTENANCE RECORDS": "Maintenance Records",
"DAILY CHECKS": "Daily Checks",
"FAULT RECORDING/ REPORTING": "Fault Recording/ Reporting",
"FAULT RECORDING/REPORTING": "Fault Recording/ Reporting",
"FAULT REPAIR": "Fault Repair",
"WEIGHT VERIFICATION RECORDS": "Weight Verification Records",
"RFS SUSPENSION CERTIFICATION #": "RFS Suspension Certification #",
"SUSPENSION SYSTEM MAINTENANCE": "Suspension System Maintenance",
"TRIP RECORDS": "Trip Records",
"FAULT RECORDING/ REPORTING ON SUSPENSION SYSTEM": "Fault Recording/ Reporting",
# short forms
"REG NO.": "Registration Number",
"REGISTRATION #": "Registration Number",
}
def map_header_to_label(header_text, labels):
"""
Given a header_text (raw) and list of candidate labels (from schema),
return the best matching label or None.
"""
if not header_text:
return None
hnorm = normalize_header_text(header_text)
# exact synonym map
for key, lab in HEADER_SYNONYMS.items():
if key in hnorm:
# ensure lab exists in candidate labels (case-insensitive)
for cand in labels:
if normalize_header_text(cand) == normalize_header_text(lab):
return cand
# if it isn't in labels, still return the lab (labels sometimes omit punctuation)
return lab
# try exact match to any candidate label
for cand in labels:
if normalize_header_text(cand) == hnorm:
return cand
# token overlap scoring (flexible)
header_words = [w for w in re.split(r"\W+", header_text) if len(w) > 2]
best = (None, 0.0)
for cand in labels:
cand_words = [w for w in re.split(r"\W+", cand) if len(w) > 2]
if not cand_words or not header_words:
continue
common = set(w.upper() for w in header_words).intersection(set(w.upper() for w in cand_words))
score = len(common) / max(1, max(len(header_words), len(cand_words)))
if score > best[1]:
best = (cand, score)
# lower threshold for vehicle tables / noisy OCR (accept >= 0.25)
if best[1] >= 0.25:
return best[0]
return None
# ---------------------------------------------------------------------
# Matching / scoring logic (keeps original heuristics)
# ---------------------------------------------------------------------
def calculate_schema_match_score(schema_name, spec, context):
score = 0
reasons = []
# Vehicle registration boost
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
keyword_matches = sum(1 for k in vehicle_keywords if k in table_text)
if keyword_matches >= 2:
score += 150
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
elif keyword_matches >= 1:
score += 75
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
# Summary boost
if "Summary" in schema_name and "details" in " ".join(context["headers"]).lower():
score += 100
reasons.append("Summary schema with DETAILS column - perfect match")
if "Summary" not in schema_name and "details" in " ".join(context["headers"]).lower():
score -= 75
reasons.append("Non-summary schema penalized for DETAILS column presence")
# context exclusions & keywords
if spec.get("context_exclusions"):
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
for exc in spec["context_exclusions"]:
if exc.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion penalty: '{exc}'")
if spec.get("context_keywords"):
table_text = " ".join(context["headers"]).lower() + " " + context["heading"].lower()
matches = sum(1 for kw in spec["context_keywords"] if kw.lower() in table_text)
if matches:
score += matches * 15
reasons.append(f"Context keyword matches: {matches}/{len(spec['context_keywords'])}")
# direct first-cell match
if context["first_cell"] and context["first_cell"].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
# heading pattern
if spec.get("headings"):
for h in spec["headings"]:
if isinstance(h, dict):
text = h.get("text", "")
else:
text = h
if fuzzy_match_heading(context["heading"], [text]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
# columns matching
if spec.get("columns"):
cols = [normalize_text(c) for c in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context["headers"]):
matches += 1
if matches == len(cols):
score += 60
reasons.append(f"All column headers match: {cols}")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# left orientation
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context["col0"]):
matches += 1
if matches > 0:
score += (matches / max(1, len(labels))) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
# row1 orientation
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
matches = 0
for lbl in labels:
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context["headers"]):
matches += 1
elif any(word.upper() in " ".join(context["headers"]).upper() for word in lbl.split() if len(word) > 3):
matches += 0.5
if matches > 0:
score += (matches / max(1, len(labels))) * 40
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
# Declarations special cases
if schema_name == "Operator Declaration" and context["first_cell"].upper().startswith("PRINT"):
if "OPERATOR DECLARATION" in context["heading"].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context["all_cells"]):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context["first_cell"].upper().startswith("PRINT"):
if any("MANAGER" in cell.upper() for cell in context["all_cells"]):
score -= 50
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
context = get_table_context(tbl)
best_match = None
best_score = 0
for name, spec in TABLE_SCHEMAS.items():
score, reasons = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score = score
best_match = name
if best_score >= 20:
return best_match
return None
# ---------------------------------------------------------------------
# Multi-schema detection & extraction (keeps original behavior)
# ---------------------------------------------------------------------
def check_multi_schema_table(tbl):
context = get_table_context(tbl)
operator_labels = [
"Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"
]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context["col0"])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context["col0"])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec.get("labels", []):
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
schema_data.setdefault(matched_label, [])
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
# ---------------------------------------------------------------------
# Extraction: special-case for Vehicle Registration tables (row1) and generic fallback
# ---------------------------------------------------------------------
def extract_table_data(tbl, schema_name, spec):
# Vehicle registration special handling
if "Vehicle Registration" in schema_name:
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec.get("labels", [])
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
if len(tbl.rows) < 2:
print(" β Vehicle table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
header_text = normalize_text(cell.text).strip()
if not header_text:
continue
print(f" Column {col_idx}: '{header_text}'")
mapped = map_header_to_label(header_text, labels)
if mapped:
# find exact candidate label string (preserve original label spelling if possible)
chosen = None
for cand in labels:
if normalize_header_text(cand) == normalize_header_text(mapped):
chosen = cand
break
column_mapping[col_idx] = chosen or mapped
print(f" β
Mapped to: '{column_mapping[col_idx]}'")
else:
# fallback: try fuzzy token overlap directly with candidate labels
best = None
best_score = 0.0
hwords = [w for w in re.split(r"\W+", header_text) if len(w) > 2]
for cand in labels:
cwords = [w for w in re.split(r"\W+", cand) if len(w) > 2]
if not cwords or not hwords:
continue
common = set(w.upper() for w in hwords).intersection(set(w.upper() for w in cwords))
score = len(common) / max(1, max(len(hwords), len(cwords)))
if score > best_score:
best = cand
best_score = score
if best and best_score >= 0.25:
column_mapping[col_idx] = best
print(f" β
Fuzzy-mapped to: '{best}' (score: {best_score:.2f})")
else:
print(f" β οΈ No mapping found for '{header_text}'")
print(f" π Total column mappings: {len(column_mapping)}")
# Extract red text from data rows
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx in column_mapping:
label = column_mapping[col_idx]
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
print(f" π΄ Found red text in '{label}': '{red_txt}'")
if red_txt not in seen.setdefault(label, set()):
seen[label].add(red_txt)
collected.setdefault(label, []).append(red_txt)
result = {k: v for k, v in collected.items() if v}
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
return result
# Generic fallback extraction logic
labels = spec.get("labels", []) + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec.get("orientation") == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if not red_txt:
continue
if by_col:
if ci < len(spec.get("labels", [])):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec.get("labels", []):
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
for spec_label in spec.get("labels", []):
spec_norm = normalize_text(spec_label).upper()
raw_norm = raw_label.upper()
if spec_norm in raw_norm or raw_norm in spec_norm:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen.setdefault(lbl, set()):
seen[lbl].add(red_txt)
collected.setdefault(lbl, []).append(red_txt)
return {k: v for k, v in collected.items() if v}
# ---------------------------------------------------------------------
# Main extraction: process all tables then paragraphs
# ---------------------------------------------------------------------
def extract_red_text(input_doc):
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
# merge safely and dedupe
existing = out.get(schema_name, {})
for k, v in schema_data.items():
existing.setdefault(k, [])
for val in v:
if val not in existing[k]:
existing[k].append(val)
out[schema_name] = existing
continue
schema = match_table_schema(tbl)
if not schema:
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
existing = out.get(schema, {})
for k, v in data.items():
existing.setdefault(k, [])
for val in v:
if val not in existing[k]:
existing[k].append(val)
out[schema] = existing
# Paragraph red-text extraction with context
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
# find a heading context by scanning backwards
context = None
for j in range(idx - 1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in patterns):
context = txt
break
# special-case date-like lines
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r".*"), red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, [])
if red_txt not in paras[context]:
paras[context].append(red_txt)
if paras:
out["paragraphs"] = paras
return out
# ---------------------------------------------------------------------
# File wrapper to support your existing calls
# ---------------------------------------------------------------------
def extract_red_text_filelike(input_file, output_file):
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
# ---------------------------------------------------------------------
# CLI entrypoint (same as before)
# ---------------------------------------------------------------------
if __name__ == "__main__":
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
# write file (dedupe already handled in merging logic above)
with open(output_json, "w", encoding="utf-8") as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |