Glossarion / image_translator.py
Shirochi's picture
Upload 41 files
457b8fd verified
"""
Image Translation Module for EPUB Translator
Handles detection, extraction, and translation of images containing text
Includes support for web novel images and watermark handling
"""
import os
import json
import base64
import zipfile
from PIL import Image, ImageDraw, ImageFont, ImageEnhance, ImageFilter
import io
from typing import List, Dict, Optional, Tuple
import re
from bs4 import BeautifulSoup
import logging
import time
import queue
import threading
# OpenCV availability check
try:
import cv2
import numpy as np
CV2_AVAILABLE = True
except ImportError:
CV2_AVAILABLE = False
print("⚠️ OpenCV not available - advanced image processing disabled")
import numpy as np
from unified_api_client import UnifiedClientError
logger = logging.getLogger(__name__)
def requires_cv2(func):
"""Decorator to skip methods that require OpenCV"""
def wrapper(self, *args, **kwargs):
if not CV2_AVAILABLE:
# Return sensible defaults based on the function
if func.__name__ == '_detect_watermark_pattern':
return False, None
elif func.__name__ in ['_remove_periodic_watermark',
'_adaptive_histogram_equalization',
'_bilateral_filter',
'_enhance_text_regions']:
# Return the image array unchanged
return args[0] if args else None
else:
return None
return func(self, *args, **kwargs)
return wrapper
def send_image_with_interrupt(client, messages, image_data, temperature, max_tokens, stop_check_fn, chunk_timeout=None, context='image_translation'):
"""Send image API request with interrupt capability and timeout retry"""
import queue
import threading
from unified_api_client import UnifiedClientError
result_queue = queue.Queue()
def api_call():
try:
start_time = time.time()
result = client.send_image(messages, image_data, temperature=temperature,
max_tokens=max_tokens, context=context)
elapsed = time.time() - start_time
result_queue.put((result, elapsed))
except Exception as e:
result_queue.put(e)
api_thread = threading.Thread(target=api_call)
api_thread.daemon = True
api_thread.start()
# Use chunk timeout if provided, otherwise use default
timeout = chunk_timeout if chunk_timeout else 300
check_interval = 0.5
elapsed = 0
while elapsed < timeout:
try:
result = result_queue.get(timeout=check_interval)
if isinstance(result, Exception):
raise result
if isinstance(result, tuple):
api_result, api_time = result
# Check if it took too long
if chunk_timeout and api_time > chunk_timeout:
raise UnifiedClientError(f"Image API call took {api_time:.1f}s (timeout: {chunk_timeout}s)")
return api_result
return result
except queue.Empty:
if stop_check_fn and stop_check_fn():
raise UnifiedClientError("Image translation stopped by user")
elapsed += check_interval
raise UnifiedClientError(f"Image API call timed out after {timeout} seconds")
class ImageTranslator:
def __init__(self, client, output_dir: str, profile_name: str = "", system_prompt: str = "",
temperature: float = 0.3, log_callback=None, progress_manager=None,
history_manager=None, chunk_context_manager=None):
"""
Initialize the image translator
Args:
client: UnifiedClient instance for API calls
output_dir: Directory to save translated images
profile_name: Source language for translation
system_prompt: System prompt from GUI to use for translation
temperature: Temperature for translation
log_callback: Optional callback function for logging
progress_manager: Shared ProgressManager instance for synchronization
"""
self.client = client
self.output_dir = output_dir
self.profile_name = profile_name
self.system_prompt = system_prompt
self.temperature = temperature
self.log_callback = log_callback
self.progress_manager = progress_manager # Use shared progress manager
self.images_dir = os.path.join(output_dir, "images")
self.translated_images_dir = os.path.join(output_dir, "translated_images")
os.makedirs(self.translated_images_dir, exist_ok=True)
self.api_delay = float(os.getenv("SEND_INTERVAL_SECONDS", "2"))
# Track processed images to avoid duplicates
self.processed_images = {}
self.image_translations = {}
# Configuration from environment
self.process_webnovel = os.getenv("PROCESS_WEBNOVEL_IMAGES", "1") == "1"
self.webnovel_min_height = int(os.getenv("WEBNOVEL_MIN_HEIGHT", "1000"))
self.image_max_tokens = int(os.getenv("MAX_OUTPUT_TOKENS", "8192"))
self.chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "2000"))
# Add context tracking for image chunks
self.contextual_enabled = os.getenv("CONTEXTUAL", "1") == "1"
self.history_manager = history_manager
self.chunk_context_manager = chunk_context_manager
self.remove_ai_artifacts = os.getenv("REMOVE_AI_ARTIFACTS", "0") == "1"
def extract_images_from_chapter(self, chapter_html: str) -> List[Dict]:
"""
Extract image references from chapter HTML
Returns:
List of dicts with image info: {src, alt, width, height}
"""
soup = BeautifulSoup(chapter_html, 'html.parser')
images = []
for img in soup.find_all('img'):
img_info = {
'src': img.get('src', ''),
'alt': img.get('alt', ''),
'width': img.get('width'),
'height': img.get('height'),
'style': img.get('style', '')
}
if img_info['src']:
images.append(img_info)
return images
def compress_image(self, image_path):
"""
Compress an image based on settings from environment variables
Args:
image_path: Path to the input image
Returns:
Path to compressed image (temporary or saved)
"""
try:
# Check if compression is enabled
if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") != "1":
return image_path # Return original if compression disabled
print(f" 🗜️ Compressing image: {os.path.basename(image_path)}")
# Load compression settings from environment
target_format = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
max_dimension = int(os.getenv("MAX_IMAGE_DIMENSION", "2048"))
max_size_mb = float(os.getenv("MAX_IMAGE_SIZE_MB", "10"))
quality_settings = {
'webp': int(os.getenv("WEBP_QUALITY", "85")),
'jpeg': int(os.getenv("JPEG_QUALITY", "85")),
'png': int(os.getenv("PNG_COMPRESSION", "6"))
}
auto_compress = os.getenv("AUTO_COMPRESS_ENABLED", "1") == "1"
preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1" # Default is now False
preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1" # New option
optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1"
progressive = os.getenv("PROGRESSIVE_ENCODING", "1") == "1"
save_compressed = os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1"
# Open image
with Image.open(image_path) as img:
original_format = img.format.lower() if img.format else 'png'
has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info)
# Special handling for GIF files
is_gif = original_format == 'gif'
if is_gif and not preserve_original_format:
print(f" 🎞️ GIF detected - converting to static image for better compression")
# For animated GIFs, we'll take the first frame
# Convert to RGBA to preserve any transparency
if img.mode == 'P' and 'transparency' in img.info:
img = img.convert('RGBA')
elif img.mode not in ('RGB', 'RGBA'):
img = img.convert('RGB')
elif is_gif and preserve_original_format:
print(f" 🎞️ GIF detected - preserving original format as requested")
# Calculate original size
original_size_mb = os.path.getsize(image_path) / (1024 * 1024)
print(f" 📊 Original: {img.width}x{img.height}, {original_size_mb:.2f}MB, format: {original_format}")
# Get chunk height from environment - this comes from the GUI setting
chunk_height = int(os.getenv("IMAGE_CHUNK_HEIGHT", "1500"))
print(f" 📏 Using chunk height from settings: {chunk_height}px")
# Check if resizing is needed - BUT NOT FOR TALL IMAGES THAT WILL BE CHUNKED!
needs_resize = img.width > max_dimension or img.height > max_dimension
# CRITICAL: Check if this is a tall image that will be chunked
# If so, DO NOT resize the height!
is_tall_text_image = img.height > chunk_height
if needs_resize:
if is_tall_text_image:
# Only resize width if needed, NEVER touch the height for tall images
if img.width > max_dimension:
# Keep aspect ratio but don't exceed max width
ratio = max_dimension / img.width
new_width = max_dimension
new_height = int(img.height * ratio)
print(f" ⚠️ Tall image ({img.height}px > chunk height {chunk_height}px)")
print(f" 📐 Resizing width only: {img.width}{new_width} (height: {img.height}{new_height})")
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
else:
print(f" ✅ Tall image ({img.height}px) - keeping dimensions (will be chunked into {(img.height + chunk_height - 1) // chunk_height} chunks)")
else:
# Normal resize for regular images (not tall enough to chunk)
ratio = min(max_dimension / img.width, max_dimension / img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.Resampling.LANCZOS)
print(f" 📐 Regular image resized to: {new_size[0]}x{new_size[1]}")
# Auto-select format if needed
if preserve_original_format and target_format == 'auto':
# Keep the original format
target_format = original_format
# Special handling for formats that might not be ideal
if original_format == 'bmp':
target_format = 'png' # Convert BMP to PNG as BMP is uncompressed
print(f" 📸 Preserving original format: {target_format}")
elif target_format == 'auto':
# For GIFs with text (web novel chapters), prefer PNG or WebP
if is_gif:
if has_transparency and preserve_transparency:
target_format = 'png' # Better for text with transparency
else:
target_format = 'webp' # Good compression for text
elif has_transparency and preserve_transparency:
target_format = 'webp'
elif optimize_for_ocr and img.width * img.height > 1000000:
target_format = 'webp'
elif original_size_mb > 5:
target_format = 'webp'
else:
target_format = 'jpeg'
print(f" 🎯 Auto-selected format: {target_format}")
# Handle transparency conversion if needed
if target_format == 'jpeg' and (has_transparency or img.mode == 'RGBA'):
# Convert to RGB with white background
rgb_img = Image.new('RGB', img.size, (255, 255, 255))
if img.mode == 'RGBA':
rgb_img.paste(img, mask=img.split()[3])
else:
rgb_img.paste(img)
img = rgb_img
# Apply OCR optimization if enabled
if optimize_for_ocr:
# Skip OCR optimization for GIF files in palette mode when preserving format
if target_format == 'gif' and img.mode in ('P', 'L'):
print(f" ⚠️ Applying OCR optimization to GIF (converting modes temporarily)")
# Convert to RGB temporarily for enhancement, then convert back
original_mode = img.mode
transparency_info = None
if img.mode == 'P':
# Preserve transparency info if present
transparency_info = img.info.get('transparency', None)
# Convert to RGBA if has transparency, otherwise RGB
if transparency_info is not None:
img = img.convert('RGBA')
else:
img = img.convert('RGB')
elif img.mode == 'L':
img = img.convert('RGB')
# Apply enhancements
from PIL import ImageEnhance
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.2)
enhancer = ImageEnhance.Sharpness(img)
img = enhancer.enhance(1.1)
# Extra sharpening for GIF text
img = enhancer.enhance(1.2)
# Convert back to original mode for GIF saving
if original_mode == 'P':
# Quantize back to palette mode
img = img.quantize(colors=256, method=2) # MEDIANCUT
if transparency_info is not None:
img.info['transparency'] = transparency_info
elif original_mode == 'L':
img = img.convert('L')
else:
# Normal OCR optimization for non-GIF formats or RGB-mode images
from PIL import ImageEnhance
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.2)
enhancer = ImageEnhance.Sharpness(img)
img = enhancer.enhance(1.1)
# Extra sharpening for GIF text which might be lower quality
if is_gif:
img = enhancer.enhance(1.2)
# Prepare save parameters based on format
save_params = {}
if target_format == 'webp':
# For WebP, decide whether to keep transparency
if has_transparency and preserve_transparency:
save_params = {
'format': 'WEBP',
'quality': quality_settings['webp'],
'method': 6,
'lossless': False,
'exact': True # Preserve transparency
}
else:
# Convert to RGB with white background for WebP without transparency
if img.mode in ('RGBA', 'LA', 'P'):
rgb_img = Image.new('RGB', img.size, (255, 255, 255))
if img.mode == 'RGBA':
rgb_img.paste(img, mask=img.split()[3])
elif img.mode == 'LA':
rgb_img.paste(img, mask=img.split()[1])
else: # P mode
if 'transparency' in img.info:
img = img.convert('RGBA')
rgb_img.paste(img, mask=img.split()[3])
else:
rgb_img.paste(img)
img = rgb_img
save_params = {
'format': 'WEBP',
'quality': quality_settings['webp'],
'method': 6,
'lossless': False
}
elif target_format == 'jpeg':
save_params = {
'format': 'JPEG',
'quality': quality_settings['jpeg'],
'optimize': True,
'progressive': progressive
}
elif target_format == 'png':
# For PNG, handle transparency properly
if not (has_transparency and preserve_transparency):
# Convert to RGB with white background if not preserving transparency
if img.mode in ('RGBA', 'LA', 'P'):
rgb_img = Image.new('RGB', img.size, (255, 255, 255))
if img.mode == 'RGBA':
rgb_img.paste(img, mask=img.split()[3])
elif img.mode == 'LA':
rgb_img.paste(img, mask=img.split()[1])
else: # P mode
if 'transparency' in img.info:
img = img.convert('RGBA')
rgb_img.paste(img, mask=img.split()[3])
else:
rgb_img.paste(img)
img = rgb_img
elif img.mode == 'P' and 'transparency' in img.info:
# Convert palette mode with transparency to RGBA
img = img.convert('RGBA')
save_params = {
'format': 'PNG',
'compress_level': quality_settings['png'],
'optimize': True
}
elif target_format == 'gif':
# GIF format - limited but preserving original when requested
print(f" ⚠️ Warning: GIF format has limited colors (256) and may reduce text quality")
if img.mode not in ('P', 'L'):
# Convert to palette mode for GIF
img = img.quantize(colors=256, method=2) # MEDIANCUT method
save_params = {
'format': 'GIF',
'optimize': True
}
# Auto-compress to meet token target if specified
if auto_compress:
target_tokens = int(os.getenv("TARGET_IMAGE_TOKENS", "1000"))
# For text-heavy images (like web novel GIFs), be less aggressive
if is_gif or 'chapter' in os.path.basename(image_path).lower():
target_mb = min(max_size_mb, 3.0) # Allow up to 3MB for text clarity
else:
target_mb = min(max_size_mb, 2.0) # Regular images
print(f" 🎯 Auto-compress target: {target_mb:.1f}MB for token efficiency")
max_size_mb = target_mb
# Save compressed image
output_path = None
quality = save_params.get('quality', 85)
# Try different quality levels to meet size target
while quality > 10:
from io import BytesIO
buffer = BytesIO()
if 'quality' in save_params:
save_params['quality'] = quality
img.save(buffer, **save_params)
compressed_size_mb = len(buffer.getvalue()) / (1024 * 1024)
if compressed_size_mb <= max_size_mb or quality <= 10:
# Size is acceptable or we've reached minimum quality
if save_compressed:
# FIXED: Handle PyInstaller paths properly
try:
# Try to determine the proper output directory
# First check if self.output_dir is absolute and exists
if hasattr(self, 'output_dir') and self.output_dir and os.path.isabs(self.output_dir):
base_output_dir = self.output_dir
else:
# Fall back to using the directory of the source image
base_output_dir = os.path.dirname(image_path)
# Look for a typical output structure
if 'translated_images' not in base_output_dir:
# Try to find or create the translated_images directory
parent_dir = base_output_dir
while parent_dir and not os.path.exists(os.path.join(parent_dir, 'translated_images')):
new_parent = os.path.dirname(parent_dir)
if new_parent == parent_dir: # Reached root
break
parent_dir = new_parent
if parent_dir and os.path.exists(os.path.join(parent_dir, 'translated_images')):
base_output_dir = parent_dir
else:
# Create translated_images in the same directory as the source
base_output_dir = os.path.dirname(image_path)
compressed_dir = os.path.join(base_output_dir, "translated_images", "compressed")
# Ensure the directory exists with proper error handling
try:
os.makedirs(compressed_dir, exist_ok=True)
except OSError as e:
print(f" ⚠️ Failed to create compressed directory: {e}")
# Fall back to source image directory
compressed_dir = os.path.join(os.path.dirname(image_path), "compressed")
os.makedirs(compressed_dir, exist_ok=True)
base_name = os.path.basename(image_path)
name, original_ext = os.path.splitext(base_name)
# Add source format info to filename if converting from GIF
if is_gif and target_format != 'gif':
name = f"{name}_from_gif"
ext = '.webp' if target_format == 'webp' else f'.{target_format}'
output_path = os.path.join(compressed_dir, f"{name}_compressed{ext}")
# Write the file with proper error handling
try:
with open(output_path, 'wb') as f:
f.write(buffer.getvalue())
print(f" 💾 Saved compressed image: {output_path}")
except OSError as e:
print(f" ❌ Failed to save compressed image: {e}")
# Fall back to temporary file
raise # This will trigger the temporary file fallback below
except Exception as e:
print(f" ⚠️ Failed to save to permanent location: {e}")
# Fall back to temporary file
import tempfile
ext = '.webp' if target_format == 'webp' else f'.{target_format}'
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
tmp.write(buffer.getvalue())
output_path = tmp.name
print(f" 📝 Created temp compressed image instead")
else:
# Save to temporary file
import tempfile
ext = '.webp' if target_format == 'webp' else f'.{target_format}'
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
tmp.write(buffer.getvalue())
output_path = tmp.name
print(f" 📝 Created temp compressed image")
compression_ratio = (1 - compressed_size_mb / original_size_mb) * 100
if compression_ratio > 0:
print(f" ✅ Compressed: {original_size_mb:.2f}MB → {compressed_size_mb:.2f}MB "
f"({compression_ratio:.1f}% reduction, quality: {quality})")
else:
print(f" ⚠️ Compression increased size: {original_size_mb:.2f}MB → {compressed_size_mb:.2f}MB "
f"({abs(compression_ratio):.1f}% larger, quality: {quality})")
# Special note for GIF conversions
if is_gif:
print(f" 🎞️ GIF converted to {target_format.upper()} for better compression")
return output_path
# Reduce quality and try again
quality -= 5
print(f" 🔄 Size {compressed_size_mb:.2f}MB > target {max_size_mb:.2f}MB, "
f"reducing quality to {quality}")
# If we couldn't meet the target, return the best we got
print(f" ⚠️ Could not meet size target, using minimum quality")
return output_path if output_path else image_path
except Exception as e:
print(f" ❌ Compression failed: {e}")
import traceback
traceback.print_exc()
return image_path # Return original on error
def _process_image_with_compression(self, image_path, context, check_stop_fn):
"""Process image with optional compression before translation"""
try:
# Apply compression if enabled
if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
compressed_path = self.compress_image(image_path)
if compressed_path != image_path:
# Use compressed image for translation
result = self._process_single_image_original(compressed_path, context, check_stop_fn)
# Clean up temp file if needed
if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1":
try:
os.unlink(compressed_path)
except:
pass
return result
# No compression, use original method
return self._process_single_image_original(image_path, context, check_stop_fn)
except Exception as e:
print(f" ❌ Error in image processing: {e}")
return None
def _process_image_chunks_single_api(self, img, width, height, context, check_stop_fn):
"""Process all image chunks in a single API call with compression support"""
num_chunks = (height + self.chunk_height - 1) // self.chunk_height
overlap_percentage = float(os.getenv('IMAGE_CHUNK_OVERLAP_PERCENT', '1'))
overlap = int(self.chunk_height * (overlap_percentage / 100))
print(" 🚀 Using SINGLE API CALL mode for " + str(num_chunks) + " chunks")
print(f" 📐 Chunk overlap: {overlap_percentage}% ({overlap} pixels)")
#print(" 📊 This is more efficient and produces better translations")
#print(" ⏳ Estimated time: 30-90 seconds total")
# Check for stop at the very beginning
if check_stop_fn and check_stop_fn():
print(" ❌ Image translation stopped by user")
return None
# Load progress for resumability
prog = self.load_progress()
image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img)))
# Detect original image format from filename or image
original_format = 'png' # default
if hasattr(self, 'current_image_path'):
ext = os.path.splitext(self.current_image_path)[1].lower()
if ext in ['.gif', '.jpg', '.jpeg', '.png', '.webp']:
original_format = ext[1:] # Remove the dot
if original_format == 'jpg':
original_format = 'jpeg'
# Check if we should preserve original format
preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1"
# Try to extract chapter number
chapter_num = None
if hasattr(self, 'current_chapter_num'):
chapter_num = self.current_chapter_num
else:
import re
match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE)
if match:
chapter_num = match.group(1)
# Create unique key
if chapter_num:
image_key = "ch" + str(chapter_num) + "_" + image_basename
else:
image_key = image_basename
# Check if already processed
if "single_api_chunks" not in prog:
prog["single_api_chunks"] = {}
if image_key in prog["single_api_chunks"] and prog["single_api_chunks"][image_key].get("completed"):
print(" ⏭️ Image already translated, using cached result")
return prog["single_api_chunks"][image_key]["translation"]
# Prepare chunks
try:
content_parts = []
print(" 📦 Preparing " + str(num_chunks) + " image chunks...")
# Check if we should save debug images
save_cleaned = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1'
if save_cleaned:
debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks")
os.makedirs(debug_dir, exist_ok=True)
print(" 🔍 Debug mode: Saving chunks to " + debug_dir)
# Create subdirectory for compressed chunks
compressed_debug_dir = os.path.join(debug_dir, "compressed")
os.makedirs(compressed_debug_dir, exist_ok=True)
# Check if compression is enabled
compression_enabled = os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1"
total_uncompressed_size = 0
total_compressed_size = 0
# Temporarily set the original format in environment for _image_to_bytes_with_compression
old_env_format = os.environ.get("ORIGINAL_IMAGE_FORMAT", "")
if preserve_original_format and original_format:
os.environ["ORIGINAL_IMAGE_FORMAT"] = original_format
for i in range(num_chunks):
# Check for stop during preparation
if check_stop_fn and check_stop_fn():
print(" ❌ Stopped while preparing chunk " + str(i+1) + "/" + str(num_chunks))
# Restore environment
if old_env_format:
os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
del os.environ["ORIGINAL_IMAGE_FORMAT"]
return None
# Calculate chunk boundaries with overlap
start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0))
end_y = min(height, (i + 1) * self.chunk_height)
# Crop the chunk
chunk = img.crop((0, start_y, width, end_y))
# Save uncompressed debug chunk if enabled
if save_cleaned:
# Use original format for debug chunks if preserving format
if preserve_original_format and original_format == 'gif':
chunk_ext = 'gif'
# Need to convert to palette mode for GIF
if chunk.mode not in ('P', 'L'):
chunk_to_save = chunk.quantize(colors=256, method=2) # MEDIANCUT
else:
chunk_to_save = chunk
else:
chunk_ext = 'png'
chunk_to_save = chunk
chunk_filename = image_key + "_chunk_" + str(i+1) + "_of_" + str(num_chunks) + "_y" + str(start_y) + "-" + str(end_y) + "." + chunk_ext
chunk_path = os.path.join(debug_dir, chunk_filename)
if chunk_ext == 'gif':
chunk_to_save.save(chunk_path, "GIF", optimize=True)
else:
chunk_to_save.save(chunk_path, "PNG")
print(" 💾 Saved debug chunk: " + chunk_filename)
# Get uncompressed size
uncompressed_size = os.path.getsize(chunk_path)
total_uncompressed_size += uncompressed_size
# Convert chunk to bytes with compression if enabled
if compression_enabled:
print(f" 🗜️ Compressing chunk {i+1}/{num_chunks}...")
# Use the compression method
chunk_bytes = self._image_to_bytes_with_compression(chunk)
# Determine format based on compression settings
format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
if format_setting == "auto":
if preserve_original_format and original_format == 'gif':
# If original was GIF and we're preserving format, use GIF
format_used = 'gif'
else:
# Check if chunk has transparency
has_transparency = chunk.mode in ('RGBA', 'LA') or (chunk.mode == 'P' and 'transparency' in chunk.info)
preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1"
if has_transparency and preserve_transparency:
format_used = 'png'
else:
format_used = 'webp' # Default to WebP for best compression
else:
format_used = format_setting
# Calculate compression stats
compressed_size = len(chunk_bytes)
if save_cleaned:
# Get the actual original size of the chunk before compression
original_chunk_buffer = io.BytesIO()
chunk.save(original_chunk_buffer, format='PNG')
actual_original_size = len(original_chunk_buffer.getvalue())
compression_ratio = (1 - compressed_size / actual_original_size) * 100
print(f" 📊 Chunk {i+1}: {uncompressed_size:,}{compressed_size:,} bytes ({compression_ratio:.1f}% reduction, format: {format_used.upper()})")
total_compressed_size += compressed_size
# Save compressed chunk for debugging
compressed_chunk_filename = image_key + "_chunk_" + str(i+1) + "_compressed." + format_used.lower()
compressed_chunk_path = os.path.join(compressed_debug_dir, compressed_chunk_filename)
with open(compressed_chunk_path, 'wb') as f:
f.write(chunk_bytes)
print(f" 💾 Saved compressed chunk: {compressed_chunk_filename}")
else:
# No compression - use original format if preserving, otherwise PNG
if preserve_original_format and original_format == 'gif':
chunk_bytes = self._image_to_bytes(chunk, format='GIF')
format_used = 'gif'
else:
chunk_bytes = self._image_to_bytes(chunk, format='PNG')
format_used = 'png'
if save_cleaned:
total_compressed_size += len(chunk_bytes)
# Convert to base64
chunk_base64 = base64.b64encode(chunk_bytes).decode('utf-8')
# Add image to content with appropriate format
content_parts.append({
"type": "image_url",
"image_url": {
"url": f"data:image/{format_used.lower()};base64," + chunk_base64
}
})
# Restore original environment variable
if old_env_format:
os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
del os.environ["ORIGINAL_IMAGE_FORMAT"]
# Count the number of images in content_parts
num_images = sum(1 for part in content_parts if part.get("type") == "image_url")
# Show overall compression stats if enabled
if compression_enabled and save_cleaned and total_uncompressed_size > 0:
overall_compression = (1 - total_compressed_size / total_uncompressed_size) * 100
print(f"\n 📊 Overall compression stats:")
print(f" Total uncompressed: {total_uncompressed_size:,} bytes ({total_uncompressed_size / 1024 / 1024:.2f} MB)")
print(f" Total compressed: {total_compressed_size:,} bytes ({total_compressed_size / 1024 / 1024:.2f} MB)")
print(f" Reduction: {overall_compression:.1f}%")
print(f" Savings: {(total_uncompressed_size - total_compressed_size):,} bytes\n")
except Exception as e:
# Make sure to restore environment
if 'old_env_format' in locals():
if old_env_format:
os.environ["ORIGINAL_IMAGE_FORMAT"] = old_env_format
elif "ORIGINAL_IMAGE_FORMAT" in os.environ:
del os.environ["ORIGINAL_IMAGE_FORMAT"]
print(" ❌ Error preparing chunks: " + str(e))
import traceback
traceback.print_exc()
print(" 🔄 Falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
# Calculate token estimate based on provider
if 'gemini' in self.client.model.lower():
# Gemini charges flat 258 tokens per image
estimated_image_tokens = num_images * 258
elif 'gpt-4' in self.client.model.lower() or 'gpt-4o' in self.client.model.lower():
# GPT-4V uses ~85 tokens per 512x512 tile
# Adjust estimate based on compression
if compression_enabled:
# Compressed images use fewer tokens
tiles_per_chunk = max(1, (self.chunk_height * width * 0.7) // (512 * 512))
else:
tiles_per_chunk = max(1, (self.chunk_height * width) // (512 * 512))
estimated_image_tokens = num_images * tiles_per_chunk * 85
elif 'claude' in self.client.model.lower():
# Claude varies by resolution, estimate based on compression
if compression_enabled:
estimated_image_tokens = num_images * 1500 # Compressed images
else:
estimated_image_tokens = num_images * 2000 # Uncompressed
else:
# Default conservative estimate
estimated_image_tokens = num_images * 1000
# Calculate text tokens
text_tokens = sum(len(part.get("text", "")) for part in content_parts if part.get("type") == "text") // 4
estimated_text_tokens = len(self.system_prompt) // 4 + text_tokens + 200
total_estimated_tokens = estimated_image_tokens + estimated_text_tokens
print(" 📊 Token estimate:")
print(" Number of images: " + str(num_images))
print(" Image tokens: ~" + "{:,}".format(estimated_image_tokens) + " (model: " + self.client.model + ")")
if compression_enabled:
print(" Compression: ENABLED ✅")
print(" Text tokens: ~" + "{:,}".format(estimated_text_tokens))
print(" Total: ~" + "{:,}".format(total_estimated_tokens) + " tokens")
# Make the API call
try:
# Build messages
messages = [{"role": "system", "content": self.system_prompt}]
messages.append({
"role": "user",
"content": content_parts
})
print("\n 🔄 Sending " + str(num_chunks) + " chunks to API in single call...")
if compression_enabled:
print(" 🗜️ Using compressed chunks for efficient API usage")
# Final stop check before API call
if check_stop_fn and check_stop_fn():
print(" ❌ Stopped before API call")
return None
# Use send_image_with_interrupt for interruptible API call
start_time = time.time()
# Get timeout settings
chunk_timeout = int(os.getenv('CHUNK_TIMEOUT', '0'))
retry_timeout = os.getenv('RETRY_TIMEOUT', '0') == '1'
# Make interruptible API call
# Since we already have images in content_parts, we need to use regular send, not send_image
try:
# Create a wrapper to make regular send interruptible
result_queue = queue.Queue()
def api_call():
try:
start = time.time()
result = self.client.send(
messages=messages,
temperature=self.temperature,
max_tokens=self.image_max_tokens
)
elapsed_time = time.time() - start
result_queue.put((result, elapsed_time))
except Exception as e:
result_queue.put(e)
api_thread = threading.Thread(target=api_call)
api_thread.daemon = True
api_thread.start()
# Check for completion or stop
timeout = chunk_timeout if chunk_timeout else 900
check_interval = 0.5
elapsed_check = 0
while elapsed_check < timeout:
try:
result = result_queue.get(timeout=check_interval)
if isinstance(result, Exception):
raise result
if isinstance(result, tuple):
response, elapsed_time = result
elapsed = elapsed_time
break
except queue.Empty:
if check_stop_fn and check_stop_fn():
raise UnifiedClientError("Translation stopped by user")
elapsed_check += check_interval
else:
raise UnifiedClientError("API call timed out after " + str(timeout) + " seconds")
except UnifiedClientError as e:
if "stopped by user" in str(e).lower():
print(" ❌ Translation stopped by user during API call")
return None
elif "timed out" in str(e).lower():
print(" ⏱️ API call timed out: " + str(e))
print(" 🔄 Falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
else:
raise
# Handle the result based on what's returned
if isinstance(response, tuple):
response, elapsed_time = response
# Handle case where elapsed_time might be 'stop' or other non-numeric
try:
elapsed = float(elapsed_time)
except (ValueError, TypeError):
elapsed = time.time() - start_time
# Success!
print(" 📡 API response received in " + "{:.1f}".format(elapsed) + "s")
# Check if response is valid
if not response:
print(" ❌ No response from API")
print(" 🔄 Falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
# Extract content from UnifiedResponse
if hasattr(response, 'content'):
translation_response = response.content
elif hasattr(response, 'text'):
translation_response = response.text
else:
translation_response = str(response)
# Unescape the response text if it has escaped characters
if '\\n' in translation_response or translation_response.startswith('('):
print(" 🔧 Detected escaped text, unescaping...")
translation_response = self._unescape_response_text(translation_response)
# Check if we got actual content
if not translation_response or not translation_response.strip():
print(" ❌ Empty response content from API")
print(" 🔄 Falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
# Process response
trans_finish = getattr(response, 'finish_reason', 'unknown')
print(" 📡 Finish reason: " + trans_finish)
print(" 📄 Response length: " + str(len(translation_response)) + " characters")
if trans_finish in ["length", "max_tokens"]:
print(" ⚠️ Translation was TRUNCATED! Consider increasing Max tokens.")
translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]"
# Clean translation based on REMOVE_AI_ARTIFACTS setting
if self.remove_ai_artifacts:
cleaned_translation = self._clean_translation_response(translation_response)
print(" 🧹 Cleaned translation (artifact removal enabled)")
else:
cleaned_translation = translation_response
print(" 📝 Using raw translation (artifact removal disabled)")
# Normalize and sanitize to avoid squared/cubed glyphs
cleaned_translation = self._normalize_unicode_width(cleaned_translation)
cleaned_translation = self._sanitize_unicode_characters(cleaned_translation)
if not cleaned_translation:
print(" ❌ No text extracted from response after cleaning")
print(" 🔄 Falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
# Save to progress
if "single_api_chunks" not in prog:
prog["single_api_chunks"] = {}
prog["single_api_chunks"][image_key] = {
"completed": True,
"translation": cleaned_translation,
"chunks": num_chunks,
"overlap": overlap,
"compression_enabled": compression_enabled,
"original_format": original_format,
"timestamp": time.time()
}
self.save_progress(prog)
print(" ✅ Translation complete (" + str(len(cleaned_translation)) + " chars)")
return cleaned_translation
except Exception as e:
error_str = str(e)
error_msg = error_str.lower()
# Log the full error
print(" ❌ API Error: " + error_str)
import traceback
traceback.print_exc()
# Check for stop
if "stopped by user" in error_msg or (check_stop_fn and check_stop_fn()):
print(" ❌ Translation stopped by user")
return None
# For any API error at this point, fall back to sequential
print(" 🔄 Single API call failed, falling back to sequential chunk processing...")
return self._process_image_chunks(img, width, height, context, check_stop_fn)
def should_translate_image(self, image_path: str, check_illustration: bool = True) -> bool:
"""
Determine if an image should be translated based on various heuristics
Args:
image_path: Path to the image file
check_illustration: Whether to check if it's likely an illustration
Returns:
True if image likely contains translatable text
"""
# Skip if already processed
if image_path in self.processed_images:
return False
# Check file extension - ADD GIF SUPPORT
ext = os.path.splitext(image_path)[1].lower()
if ext not in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp']:
return False
# Check file size (skip very small images)
if os.path.exists(image_path):
size = os.path.getsize(image_path)
if size < 5000: # Less than 5KB (lowered threshold for GIFs)
return False
# For GIF files from web novels, always process them
if ext == '.gif' and 'chapter' in os.path.basename(image_path).lower():
print(f" 📜 Web novel GIF detected: {os.path.basename(image_path)}")
return True
# Check file size (skip very small images)
if os.path.exists(image_path):
size = os.path.getsize(image_path)
if size < 10000: # Less than 10KB
return False
# Check image dimensions
try:
with Image.open(image_path) as img:
width, height = img.size
# Skip very small images (likely icons)
if width < 100 or height < 100:
return False
# Calculate aspect ratio
aspect_ratio = width / height
# Check for web novel/long text images (very tall, narrow images)
if self.process_webnovel and height > self.webnovel_min_height and aspect_ratio < 0.5:
# This is likely a web novel chapter or long text screenshot
print(f" 📜 Web novel/long text image detected: {os.path.basename(image_path)}")
return True
# Skip OTHER extreme aspect ratios (but not tall text images)
if aspect_ratio > 5: # Very wide images
return False
# Additional check for illustrations (typically larger, square-ish images)
if check_illustration:
# Large images with normal aspect ratios are often illustrations
if width > 800 and height > 600 and 0.5 < aspect_ratio < 2:
# Check filename for illustration indicators
filename = os.path.basename(image_path).lower()
illustration_indicators = [
'illust', 'illustration', 'art', 'artwork', 'drawing',
'painting', 'sketch', 'design', 'visual', 'graphic',
'image', 'picture', 'fig', 'figure', 'plate'
]
# If filename suggests it's an illustration, skip
for indicator in illustration_indicators:
if indicator in filename:
print(f" 📎 Skipping likely illustration: {filename}")
return False
except Exception:
return False
# Check filename patterns that suggest text content
filename = os.path.basename(image_path).lower()
# Strong indicators of text content (including web novel patterns)
text_indicators = [
'text', 'title', 'chapter', 'page', 'dialog', 'dialogue',
'bubble', 'sign', 'note', 'letter', 'message', 'notice',
'banner', 'caption', 'subtitle', 'heading', 'label',
'menu', 'interface', 'ui', 'screen', 'display',
'novel', 'webnovel', 'lightnovel', 'wn', 'ln', # Web novel indicators
'chap', 'ch', 'episode', 'ep' # Chapter indicators
]
# Strong indicators to skip
skip_indicators = [
'cover', 'logo', 'decoration', 'ornament', 'border',
'background', 'wallpaper', 'texture', 'pattern',
'icon', 'button', 'avatar', 'profile', 'portrait',
'landscape', 'scenery', 'character', 'hero', 'heroine'
]
# Check for text indicators
for indicator in text_indicators:
if indicator in filename:
print(f" 📝 Text-likely image detected: {filename}")
return True
# Check for skip indicators
for indicator in skip_indicators:
if indicator in filename:
print(f" 🎨 Skipping decorative/character image: {filename}")
return False
# For ambiguous cases, if it's a tall image, assume it might be text
try:
with Image.open(image_path) as img:
width, height = img.size
if height > width * 2: # Height is more than twice the width
print(f" 📜 Tall image detected, assuming possible text content")
return True
except:
pass
# Default to False to avoid processing regular illustrations
return False
def load_progress(self):
"""Load progress tracking for image chunks"""
if self.progress_manager:
# Use the shared progress manager's data
prog = self.progress_manager.prog.copy()
# Ensure image_chunks key exists
if "image_chunks" not in prog:
prog["image_chunks"] = {}
return prog
else:
# Fallback to original behavior if no progress manager provided
progress_file = os.path.join(self.output_dir, "translation_progress.json")
if os.path.exists(progress_file):
try:
with open(progress_file, 'r', encoding='utf-8') as f:
prog = json.load(f)
# Ensure image_chunks key exists
if "image_chunks" not in prog:
prog["image_chunks"] = {}
return prog
except Exception as e:
print(f"⚠️ Warning: Could not load progress file: {e}")
# Return minimal structure to avoid breaking
return {
"chapters": {},
"content_hashes": {},
"chapter_chunks": {},
"image_chunks": {},
"version": "2.1"
}
# Return the same structure as TranslateKRtoEN expects
return {
"chapters": {},
"content_hashes": {},
"chapter_chunks": {},
"image_chunks": {},
"version": "2.1"
}
def save_progress(self, prog):
"""Save progress tracking - with safe writing"""
if self.progress_manager:
# Update the shared progress manager's data
self.progress_manager.prog["image_chunks"] = prog.get("image_chunks", {})
# Save through the progress manager
self.progress_manager.save()
else:
# Fallback to original behavior if no progress manager provided
progress_file = os.path.join(self.output_dir, "translation_progress.json")
try:
# Write to a temporary file first
temp_file = progress_file + '.tmp'
with open(temp_file, 'w', encoding='utf-8') as f:
json.dump(prog, f, ensure_ascii=False, indent=2)
# If successful, replace the original file
if os.path.exists(progress_file):
os.remove(progress_file)
os.rename(temp_file, progress_file)
except Exception as e:
print(f"⚠️ Warning: Failed to save progress: {e}")
# Clean up temp file if it exists
if os.path.exists(temp_file):
try:
os.remove(temp_file)
except:
pass
def preprocess_image_for_watermarks(self, image_path: str) -> str:
"""
Enhanced preprocessing for watermark removal and text clarity
Now returns path to processed image instead of bytes
Args:
image_path: Path to the image file
Returns:
Path to processed image (either cleaned permanent file or original)
"""
try:
# Check if watermark removal is enabled
if not os.getenv("ENABLE_WATERMARK_REMOVAL", "1") == "1":
return image_path # Return original path
print(f" 🧹 Preprocessing image for watermark removal...")
# Open image
img = Image.open(image_path)
# Convert to RGB if necessary
if img.mode not in ('RGB', 'RGBA'):
img = img.convert('RGB')
# Check if advanced watermark removal is enabled AND cv2 is available
if os.getenv("ADVANCED_WATERMARK_REMOVAL", "0") == "1":
if CV2_AVAILABLE:
print(f" 🔬 Using advanced watermark removal...")
# Convert to numpy array for advanced processing
img_array = np.array(img)
# These will safely return defaults if cv2 is not available
has_pattern, pattern_mask = self._detect_watermark_pattern(img_array)
if has_pattern:
print(f" 🔍 Detected watermark pattern in image")
img_array = self._remove_periodic_watermark(img_array, pattern_mask)
img_array = self._adaptive_histogram_equalization(img_array)
img_array = self._bilateral_filter(img_array)
img_array = self._enhance_text_regions(img_array)
# Convert back to PIL Image
img = Image.fromarray(img_array)
else:
print(f" ⚠️ Advanced watermark removal requested but OpenCV not available")
# Apply basic PIL enhancements (always works)
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.5)
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(1.1)
img = img.filter(ImageFilter.SHARPEN)
# Check if we should save cleaned images
save_cleaned = os.getenv("SAVE_CLEANED_IMAGES", "1") == "1"
if save_cleaned:
# Save to permanent location
cleaned_dir = os.path.join(self.translated_images_dir, "cleaned")
os.makedirs(cleaned_dir, exist_ok=True)
base_name = os.path.basename(image_path)
name, ext = os.path.splitext(base_name)
cleaned_path = os.path.join(cleaned_dir, f"{name}_cleaned{ext}")
img.save(cleaned_path, optimize=True)
print(f" 💾 Saved cleaned image: {cleaned_path}")
return cleaned_path # Return path to cleaned image
else:
# Save to temporary file
import tempfile
_, ext = os.path.splitext(image_path)
with tempfile.NamedTemporaryFile(suffix=ext, delete=False) as tmp:
img.save(tmp.name, optimize=False)
print(f" 📝 Created temp cleaned image")
return tmp.name # Return temp path
except Exception as e:
logger.warning(f"Could not preprocess image: {e}")
return image_path # Return original on error
@requires_cv2
def _detect_watermark_pattern(self, img_array: np.ndarray) -> Tuple[bool, Optional[np.ndarray]]:
"""Detect repeating watermark patterns using FFT"""
try:
# Convert to grayscale for pattern detection
if len(img_array.shape) == 3:
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
else:
gray = img_array
# Apply FFT to detect periodicity
f_transform = np.fft.fft2(gray)
f_shift = np.fft.fftshift(f_transform)
magnitude = np.log(np.abs(f_shift) + 1) # Log scale for better visualization
# Look for peaks that indicate repeating patterns
mean_mag = np.mean(magnitude)
std_mag = np.std(magnitude)
threshold = mean_mag + 2 * std_mag
# Create binary mask of high-frequency components
pattern_mask = magnitude > threshold
# Exclude center (DC component) - represents average brightness
center_y, center_x = pattern_mask.shape[0] // 2, pattern_mask.shape[1] // 2
pattern_mask[center_y-10:center_y+10, center_x-10:center_x+10] = False
# Count significant peaks
pattern_threshold = int(os.getenv("WATERMARK_PATTERN_THRESHOLD", "10"))
peak_count = np.sum(pattern_mask)
# If we have significant peaks, there's likely a repeating pattern
has_pattern = peak_count > pattern_threshold
return has_pattern, pattern_mask if has_pattern else None
except Exception as e:
logger.warning(f"Pattern detection failed: {e}")
return False, None
@requires_cv2
def _remove_periodic_watermark(self, img_array: np.ndarray, pattern_mask: np.ndarray) -> np.ndarray:
"""Remove periodic watermark using frequency domain filtering"""
try:
result = img_array.copy()
# Process each color channel
for channel in range(img_array.shape[2] if len(img_array.shape) == 3 else 1):
if len(img_array.shape) == 3:
gray = img_array[:, :, channel]
else:
gray = img_array
# Apply FFT
f_transform = np.fft.fft2(gray)
f_shift = np.fft.fftshift(f_transform)
# Apply notch filter to remove periodic components
f_shift[pattern_mask] = 0
# Inverse FFT
f_ishift = np.fft.ifftshift(f_shift)
img_filtered = np.fft.ifft2(f_ishift)
img_filtered = np.real(img_filtered)
# Ensure values are in valid range
img_filtered = np.clip(img_filtered, 0, 255)
if len(img_array.shape) == 3:
result[:, :, channel] = img_filtered
else:
result = img_filtered
return result.astype(np.uint8)
except Exception as e:
logger.warning(f"Watermark removal failed: {e}")
return img_array
@requires_cv2
def _adaptive_histogram_equalization(self, img_array: np.ndarray) -> np.ndarray:
"""Apply CLAHE (Contrast Limited Adaptive Histogram Equalization)"""
try:
# Convert to LAB color space for better results
lab = cv2.cvtColor(img_array, cv2.COLOR_RGB2LAB)
# Split channels
l, a, b = cv2.split(lab)
# Apply CLAHE to L channel only
clahe_limit = float(os.getenv("WATERMARK_CLAHE_LIMIT", "3.0"))
clahe = cv2.createCLAHE(clipLimit=clahe_limit, tileGridSize=(8, 8))
l = clahe.apply(l)
# Merge channels back
lab = cv2.merge([l, a, b])
# Convert back to RGB
enhanced = cv2.cvtColor(lab, cv2.COLOR_LAB2RGB)
return enhanced
except Exception as e:
logger.warning(f"Adaptive histogram equalization failed: {e}")
return img_array
@requires_cv2
def _bilateral_filter(self, img_array: np.ndarray) -> np.ndarray:
"""Apply bilateral filter for edge-preserving denoising"""
try:
# Bilateral filter removes noise while keeping edges sharp
filtered = cv2.bilateralFilter(
img_array,
d=9,
sigmaColor=75,
sigmaSpace=75
)
return filtered
except Exception as e:
logger.warning(f"Bilateral filtering failed: {e}")
return img_array
@requires_cv2
def _enhance_text_regions(self, img_array: np.ndarray) -> np.ndarray:
"""Specifically enhance regions likely to contain text"""
try:
# Convert to grayscale for text detection
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Step 1: Detect text regions using gradient analysis
grad_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
gradient_magnitude = np.sqrt(grad_x**2 + grad_y**2)
# Normalize gradient
gradient_magnitude = (gradient_magnitude / gradient_magnitude.max() * 255).astype(np.uint8)
# Step 2: Create text probability mask
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
gradient_density = cv2.morphologyEx(gradient_magnitude, cv2.MORPH_CLOSE, kernel)
# Threshold to get text regions
_, text_mask = cv2.threshold(gradient_density, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# Dilate to connect text regions
text_mask = cv2.dilate(text_mask, kernel, iterations=2)
# Step 3: Enhance contrast in text regions
enhanced = img_array.copy()
# Create 3-channel mask
text_mask_3ch = cv2.cvtColor(text_mask, cv2.COLOR_GRAY2RGB) / 255.0
# Apply enhancement only to text regions
enhanced = enhanced.astype(np.float32)
enhanced = enhanced * (1 + (0.2 * text_mask_3ch)) # 20% enhancement in text regions
enhanced = np.clip(enhanced, 0, 255).astype(np.uint8)
return enhanced
except Exception as e:
logger.warning(f"Text region enhancement failed: {e}")
return img_array
def translate_image(self, image_path: str, context: str = "", check_stop_fn=None) -> Optional[str]:
"""
Translate text in an image using vision API - with chunking for tall images and stop support
"""
processed_path = None
compressed_path = None
try:
self.current_image_path = image_path
print(f" 🔍 translate_image called for: {image_path}")
# Check for stop at the beginning
if check_stop_fn and check_stop_fn():
print(" ❌ Image translation stopped by user")
return None
if not os.path.exists(image_path):
logger.warning(f"Image not found: {image_path}")
print(f" ❌ Image file does not exist!")
return None
# Get configuration
hide_label = os.getenv("HIDE_IMAGE_TRANSLATION_LABEL", "0") == "1"
# Apply compression FIRST if enabled
compressed_path = image_path
if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
compressed_path = self.compress_image(image_path)
# If compression produced a different file, use it
if compressed_path != image_path:
print(f" 🗜️ Using compressed image for translation")
# Apply watermark preprocessing (on compressed image if applicable)
processed_path = self.preprocess_image_for_watermarks(compressed_path)
# Open and process the image (now using processed_path)
with Image.open(processed_path) as img:
width, height = img.size
aspect_ratio = width / height if height > 0 else 1
print(f" 📐 Image dimensions: {width}x{height}, aspect ratio: {aspect_ratio:.2f}")
# Convert to RGB if necessary
if img.mode not in ('RGB', 'RGBA'):
img = img.convert('RGB')
# Determine if it's a long text image
is_long_text = height > self.webnovel_min_height and aspect_ratio < 0.5
# Process chunks or single image
if height > self.chunk_height:
# Check if single API mode is enabled
if os.getenv("SINGLE_API_IMAGE_CHUNKS", "1") == "1":
translated_text = self._process_image_chunks_single_api(img, width, height, context, check_stop_fn)
else:
translated_text = self._process_image_chunks(img, width, height, context, check_stop_fn)
else:
translated_text = self._process_single_image(img, context, check_stop_fn)
if not translated_text:
return None
# Store the result for caching (use original path as key)
self.processed_images[image_path] = translated_text
# Save translation for debugging
self._save_translation_debug(image_path, translated_text)
# Create HTML output - use processed_path for the image reference
# Handle cross-drive paths on Windows
try:
img_rel_path = os.path.relpath(processed_path, self.output_dir)
except ValueError as e:
# This happens when paths are on different drives in Windows
print(f" ⚠️ Cross-drive path detected, copying image to output directory")
# Copy the processed image to the output directory's images folder
import shutil
images_output_dir = os.path.join(self.output_dir, "images")
os.makedirs(images_output_dir, exist_ok=True)
# Generate a unique filename to avoid conflicts
base_name = os.path.basename(processed_path)
dest_path = os.path.join(images_output_dir, base_name)
# Handle potential naming conflicts
if os.path.exists(dest_path):
name, ext = os.path.splitext(base_name)
counter = 1
while os.path.exists(dest_path):
dest_path = os.path.join(images_output_dir, f"{name}_{counter}{ext}")
counter += 1
# Copy the file
shutil.copy2(processed_path, dest_path)
print(f" 📋 Copied image to: {dest_path}")
# Calculate relative path from the copied location
img_rel_path = os.path.relpath(dest_path, self.output_dir)
# Update processed_path for cleanup logic
processed_path = dest_path
html_output = self._create_html_output(img_rel_path, translated_text, is_long_text,
hide_label, check_stop_fn and check_stop_fn())
return html_output
except Exception as e:
logger.error(f"Error translating image {image_path}: {e}")
print(f" ❌ Exception in translate_image: {e}")
import traceback
traceback.print_exc()
return None
finally:
# Clean up temp files if they were created
# Clean up compressed file if it's temporary
if compressed_path and compressed_path != image_path:
if not os.getenv("SAVE_COMPRESSED_IMAGES", "0") == "1":
try:
if os.path.exists(compressed_path):
os.unlink(compressed_path)
print(f" 🧹 Cleaned up temp compressed file")
except Exception as e:
logger.warning(f"Could not delete temp compressed file: {e}")
# Clean up processed file if it's temporary
if processed_path and processed_path != image_path and processed_path != compressed_path:
if not os.getenv("SAVE_CLEANED_IMAGES", "0") == "1":
try:
if os.path.exists(processed_path):
os.unlink(processed_path)
print(f" 🧹 Cleaned up temp processed file")
except Exception as e:
logger.warning(f"Could not delete temp processed file: {e}")
def _process_single_image(self, img, context, check_stop_fn):
"""Process a single image that doesn't need chunking"""
# Clear any previous context
self.image_chunk_context = []
print(f" 👍 Image height OK ({img.height}px), processing as single image...")
# Check for stop before processing
if check_stop_fn and check_stop_fn():
print(" ❌ Image translation stopped by user")
return None
# Convert image to bytes using compression settings
image_bytes = self._image_to_bytes_with_compression(img)
# Call API
translation = self._call_vision_api(image_bytes, context, check_stop_fn)
if translation:
if self.remove_ai_artifacts:
translation = self._clean_translation_response(translation)
# Normalize and sanitize output
translation = self._normalize_unicode_width(translation)
translation = self._sanitize_unicode_characters(translation)
return translation
else:
print(f" ❌ Translation returned empty result")
return None
def _image_to_bytes_with_compression(self, img):
"""Convert PIL Image to bytes with compression settings applied"""
# Check if compression is enabled
if os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
# Get compression settings
format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
webp_quality = int(os.getenv("WEBP_QUALITY", "85"))
jpeg_quality = int(os.getenv("JPEG_QUALITY", "85"))
png_compression = int(os.getenv("PNG_COMPRESSION", "6"))
preserve_transparency = os.getenv("PRESERVE_TRANSPARENCY", "0") == "1"
optimize_for_ocr = os.getenv("OPTIMIZE_FOR_OCR", "1") == "1"
# Store original mode for GIF handling
original_mode = img.mode
transparency_info = None
# Check if this is a chunk from a GIF (palette mode)
is_gif_chunk = img.mode in ('P', 'L')
# Apply OCR optimization if enabled
if optimize_for_ocr:
# Handle GIF chunks in palette mode
if is_gif_chunk:
print(f" 🎨 Chunk is in {img.mode} mode - converting for optimization")
if img.mode == 'P':
# Preserve transparency info if present
transparency_info = img.info.get('transparency', None)
# Convert to RGBA if has transparency, otherwise RGB
if transparency_info is not None:
img = img.convert('RGBA')
else:
img = img.convert('RGB')
elif img.mode == 'L':
img = img.convert('RGB')
# Apply enhancements (now safe for all modes)
from PIL import ImageEnhance
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(1.2)
enhancer = ImageEnhance.Sharpness(img)
img = enhancer.enhance(1.1)
# Extra sharpening for GIF-sourced chunks
if is_gif_chunk:
img = enhancer.enhance(1.2)
print(f" ✨ Applied extra sharpening for GIF-sourced chunk")
# Auto-select format if needed
if format_setting == "auto":
# Check if we should preserve original format
preserve_original_format = os.getenv("PRESERVE_ORIGINAL_FORMAT", "0") == "1"
original_format = os.getenv("ORIGINAL_IMAGE_FORMAT", "").lower()
# If preserving format and we know the original format
if preserve_original_format and original_format:
if original_format == 'gif':
format_setting = 'gif'
print(f" 🎞️ Preserving GIF format for chunk")
elif original_format in ['png', 'jpeg', 'jpg', 'webp']:
format_setting = original_format.replace('jpg', 'jpeg')
print(f" 📸 Preserving {format_setting.upper()} format for chunk")
else:
# Fallback to PNG for unknown formats
format_setting = "png"
print(f" 📸 Using PNG for chunk (unknown original format: {original_format})")
# Legacy fallback: If chunk is in palette mode and preserve format is on, assume GIF
elif preserve_original_format and is_gif_chunk:
format_setting = 'gif'
print(f" 🎞️ Preserving GIF format for chunk (palette mode detected)")
else:
# Check image characteristics for auto-selection
has_transparency = img.mode in ('RGBA', 'LA') or (img.mode == 'P' and 'transparency' in img.info)
# For chunks, prefer WebP for best compression unless transparency is needed
if has_transparency and preserve_transparency:
format_setting = "png" # PNG for transparency
else:
format_setting = "webp" # WebP for best compression
print(f" 🎯 Auto-selected format for chunk: {format_setting}")
# Use the selected format with compression
if format_setting == "webp":
print(f" 🗜️ Compressing chunk as WebP (quality: {webp_quality})")
return self._image_to_bytes(img, format='WEBP', quality=webp_quality)
elif format_setting == "jpeg":
print(f" 🗜️ Compressing chunk as JPEG (quality: {jpeg_quality})")
return self._image_to_bytes(img, format='JPEG', quality=jpeg_quality)
elif format_setting == "png":
# PNG uses compression level, not quality
print(f" 🗜️ Compressing chunk as PNG (compression: {png_compression})")
img_bytes = io.BytesIO()
img.save(img_bytes, format='PNG', compress_level=png_compression, optimize=True)
img_bytes.seek(0)
data = img_bytes.read()
# Log compression info
print(f" 📊 Chunk size: {len(data) / 1024:.1f}KB")
return data
elif format_setting == "gif":
# GIF format for chunks
print(f" 🎞️ Saving chunk as GIF")
img_bytes = io.BytesIO()
# Convert to palette mode if needed
if img.mode not in ('P', 'L'):
img = img.quantize(colors=256, method=2) # MEDIANCUT
img.save(img_bytes, format='GIF', optimize=True)
img_bytes.seek(0)
data = img_bytes.read()
# Log compression info
print(f" 📊 Chunk size: {len(data) / 1024:.1f}KB")
return data
# Default: use existing method without compression
print(f" ⚠️ Compression disabled, using default PNG format")
return self._image_to_bytes(img)
def _image_to_bytes(self, img, format='PNG', quality=None):
"""Convert PIL Image to bytes with various format options"""
img_bytes = io.BytesIO()
if format == 'WEBP':
# WebP is much better for manga/text images
# Ensure RGB mode for WebP (no RGBA in some cases)
if img.mode == 'RGBA' and not os.getenv("PRESERVE_TRANSPARENCY", "0") == "1":
# Create white background
background = Image.new('RGB', img.size, (255, 255, 255))
background.paste(img, mask=img.split()[3])
img = background
elif img.mode not in ['RGB', 'L', 'RGBA']:
img = img.convert('RGB')
if quality:
img.save(img_bytes, format='WEBP', quality=quality, method=6)
else:
img.save(img_bytes, format='WEBP', lossless=True)
elif format == 'JPEG':
# JPEG doesn't support transparency, so convert RGBA to RGB
if img.mode == 'RGBA':
# Create white background
background = Image.new('RGB', img.size, (255, 255, 255))
background.paste(img, mask=img.split()[3])
img = background
elif img.mode != 'RGB':
img = img.convert('RGB')
# Save as JPEG with specified quality
if quality:
img.save(img_bytes, format='JPEG', quality=quality, optimize=True,
progressive=os.getenv("PROGRESSIVE_ENCODING", "1") == "1")
else:
img.save(img_bytes, format='JPEG', quality=85, optimize=True)
elif format == 'GIF':
# GIF format handling
if img.mode not in ('P', 'L'):
# Convert to palette mode for GIF
img = img.quantize(colors=256, method=2) # MEDIANCUT method
# Save as GIF
img.save(img_bytes, format='GIF', optimize=True)
else:
# Default PNG format
compress_level = int(os.getenv("PNG_COMPRESSION", "6"))
img.save(img_bytes, format='PNG', compress_level=compress_level, optimize=True)
img_bytes.seek(0)
data = img_bytes.read()
# Log the size for debugging
size_kb = len(data) / 1024
if size_kb > 500: # Warn if chunk is over 500KB
print(f" ⚠️ Large chunk detected: {size_kb:.1f}KB - consider enabling compression!")
return data
def _process_image_chunks(self, img, width, height, context, check_stop_fn):
"""Process a tall image by splitting it into chunks with contextual support"""
num_chunks = (height + self.chunk_height - 1) // self.chunk_height
overlap = 100 # Pixels of overlap between chunks
print(f" ✂️ Image too tall ({height}px), splitting into {num_chunks} chunks of {self.chunk_height}px...")
# Clear context for new image
self.image_chunk_context = []
# Add retry info if enabled
if os.getenv("RETRY_TIMEOUT", "1") == "1":
timeout_seconds = int(os.getenv("CHUNK_TIMEOUT", "180"))
print(f" ⏱️ Auto-retry enabled: Will retry if chunks take > {timeout_seconds}s")
print(f" ⏳ This may take {num_chunks * 30}-{num_chunks * 60} seconds to complete")
print(f" ℹ️ Stop will take effect after current chunk completes")
# Check if we should save debug chunks
save_debug_chunks = os.getenv('SAVE_CLEANED_IMAGES', '0') == '1'
save_compressed_chunks = os.getenv('SAVE_COMPRESSED_IMAGES', '0') == '1'
if save_debug_chunks or save_compressed_chunks:
debug_dir = os.path.join(self.output_dir, "translated_images", "debug_chunks")
os.makedirs(debug_dir, exist_ok=True)
print(f" 🔍 Debug mode: Saving chunks to {debug_dir}")
# Load progress - maintaining full structure
prog = self.load_progress()
# Create unique key for this image - include chapter info if available
image_basename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else str(hash(str(img)))
# Try to extract chapter number from context or path
chapter_num = None
if hasattr(self, 'current_chapter_num'):
chapter_num = self.current_chapter_num
else:
# Try to extract from filename
import re
match = re.search(r'ch(?:apter)?[\s_-]*(\d+)', image_basename, re.IGNORECASE)
if match:
chapter_num = match.group(1)
# Create a more unique key that includes chapter info
if chapter_num:
image_key = f"ch{chapter_num}_{image_basename}"
else:
image_key = image_basename
# Initialize image chunk tracking
if "image_chunks" not in prog:
prog["image_chunks"] = {}
if image_key not in prog["image_chunks"]:
prog["image_chunks"][image_key] = {
"total": num_chunks,
"completed": [],
"chunks": {},
"height": height,
"width": width,
"chapter": chapter_num, # Store chapter association
"filename": image_basename
}
all_translations = []
was_stopped = False
# Process chunks
for i in range(num_chunks):
# Check if this chunk was already translated
if i in prog["image_chunks"][image_key]["completed"]:
saved_chunk = prog["image_chunks"][image_key]["chunks"].get(str(i))
if saved_chunk:
all_translations.append(saved_chunk)
print(f" ⏭️ Chunk {i+1}/{num_chunks} already translated, skipping")
continue
# Check for stop before processing each chunk
if check_stop_fn and check_stop_fn():
print(f" ❌ Stopped at chunk {i+1}/{num_chunks}")
was_stopped = True
break
# Calculate chunk boundaries with overlap
start_y = max(0, i * self.chunk_height - (overlap if i > 0 else 0))
end_y = min(height, (i + 1) * self.chunk_height)
current_filename = os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown'
print(f" 📄 Processing chunk {i+1}/{num_chunks} (y: {start_y}-{end_y}) for {current_filename}")
if self.log_callback and hasattr(self.log_callback, '__self__') and hasattr(self.log_callback.__self__, 'append_chunk_progress'):
self.log_callback.__self__.append_chunk_progress(
i + 1,
num_chunks,
"image",
f"Image: {os.path.basename(self.current_image_path) if hasattr(self, 'current_image_path') else 'unknown'}"
)
print(f" ⏳ Estimated time: 30-60 seconds for this chunk")
# Crop and process the chunk
chunk = img.crop((0, start_y, width, end_y))
# Convert chunk to bytes with compression
chunk_bytes = self._image_to_bytes_with_compression(chunk)
# Save debug chunks if enabled
if save_debug_chunks or save_compressed_chunks:
# Save original chunk
if save_debug_chunks:
chunk_path = os.path.join(debug_dir, f"chunk_{i+1}_original.png")
chunk.save(chunk_path)
print(f" 💾 Saved original chunk: {chunk_path}")
# Save compressed chunk if enabled
if save_compressed_chunks and os.getenv("ENABLE_IMAGE_COMPRESSION", "0") == "1":
compressed_dir = os.path.join(self.output_dir, "translated_images", "compressed", "chunks")
os.makedirs(compressed_dir, exist_ok=True)
# Use compression settings to save chunk
format_setting = os.getenv("IMAGE_COMPRESSION_FORMAT", "auto")
if format_setting == "auto":
format_setting = "webp" # Default to WebP for chunks
# Create a temporary in-memory file for the compressed chunk
from io import BytesIO
compressed_buffer = BytesIO()
if format_setting == "webp":
quality = int(os.getenv("WEBP_QUALITY", "85"))
chunk.save(compressed_buffer, format='WEBP', quality=quality, method=6)
compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.webp")
elif format_setting == "jpeg":
quality = int(os.getenv("JPEG_QUALITY", "85"))
# Convert RGBA to RGB for JPEG
if chunk.mode == 'RGBA':
rgb_chunk = Image.new('RGB', chunk.size, (255, 255, 255))
rgb_chunk.paste(chunk, mask=chunk.split()[3])
chunk_to_save = rgb_chunk
else:
chunk_to_save = chunk
chunk_to_save.save(compressed_buffer, format='JPEG', quality=quality, optimize=True)
compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.jpg")
else: # PNG
compress_level = int(os.getenv("PNG_COMPRESSION", "6"))
chunk.save(compressed_buffer, format='PNG', compress_level=compress_level, optimize=True)
compressed_chunk_path = os.path.join(compressed_dir, f"chunk_{i+1}_compressed.png")
# Write the compressed chunk to disk
with open(compressed_chunk_path, 'wb') as f:
f.write(compressed_buffer.getvalue())
# Get actual original chunk size before compression
chunk_buffer = BytesIO()
chunk.save(chunk_buffer, format='PNG')
actual_original_size = len(chunk_buffer.getvalue()) / 1024 # KB
# Log compression info
compressed_size = len(compressed_buffer.getvalue()) / 1024 # KB
compression_ratio = (1 - compressed_size / actual_original_size) * 100 if actual_original_size > 0 else 0
print(f" 💾 Saved compressed chunk: {compressed_chunk_path}")
print(f" 📊 Chunk compression: {actual_original_size:.1f}KB → {compressed_size:.1f}KB ({compression_ratio:.1f}% reduction)")
# Get custom image chunk prompt template from environment
image_chunk_prompt_template = os.getenv("IMAGE_CHUNK_PROMPT", "This is part {chunk_idx} of {total_chunks} of a longer image. You must maintain the narrative flow with the previous chunks while translating it and following all system prompt guidelines previously mentioned. {context}")
# Build context for this chunk
chunk_context = image_chunk_prompt_template.format(
chunk_idx=i+1,
total_chunks=num_chunks,
context=context
)
# Translate chunk WITH CONTEXT
translation = self._call_vision_api(chunk_bytes, chunk_context, check_stop_fn)
if translation:
# Clean AI artifacts from chunk
if self.remove_ai_artifacts:
chunk_text = self._clean_translation_response(translation)
else:
chunk_text = translation
# Normalize and sanitize each chunk
chunk_text = self._normalize_unicode_width(chunk_text)
chunk_text = self._sanitize_unicode_characters(chunk_text)
all_translations.append(chunk_text)
print(f" 🔍 DEBUG: Chunk {i+1} length: {len(chunk_text)} chars")
if len(chunk_text) > 10000: # Flag suspiciously large chunks
print(f" ⚠️ WARNING: Chunk unusually large!")
print(f" First 500 chars: {chunk_text[:500]}")
print(f" Last 500 chars: {chunk_text[-500:]}")
# Store context for next chunks
if self.contextual_enabled:
self.image_chunk_context.append({
"user": chunk_context,
"assistant": chunk_text
})
# Save chunk progress
prog["image_chunks"][image_key]["completed"].append(i)
prog["image_chunks"][image_key]["chunks"][str(i)] = chunk_text
self.save_progress(prog)
print(f" ✅ Chunk {i+1} translated and saved ({len(chunk_text)} chars)")
else:
print(f" ⚠️ Chunk {i+1} returned no text")
# Delay between chunks if not the last one
if i < num_chunks - 1 and not was_stopped:
self._api_delay_with_stop_check(check_stop_fn)
if check_stop_fn and check_stop_fn():
was_stopped = True
break
# Combine all chunk translations
if all_translations:
translated_text = "\n\n".join(all_translations)
if was_stopped:
translated_text += "\n\n[TRANSLATION STOPPED BY USER]"
print(f" ✅ Combined {len(all_translations)} chunks into final translation")
return translated_text
else:
print(f" ❌ No successful translations from any chunks")
return None
def set_current_chapter(self, chapter_num):
"""Set the current chapter number for progress tracking"""
self.current_chapter_num = chapter_num
def _call_vision_api(self, image_data, context, check_stop_fn):
"""Make the actual API call for vision translation with retry support"""
# Build messages - NO HARDCODED PROMPT
messages = [
{"role": "system", "content": self.system_prompt}
]
# Add context from previous chunks if contextual is enabled
if hasattr(self, 'contextual_enabled') and self.contextual_enabled:
if hasattr(self, 'image_chunk_context') and self.image_chunk_context:
# Include ALL previous chunks from this image, not just last 2
print(f" 📚 Including ALL {len(self.image_chunk_context)} previous chunks as context")
for ctx in self.image_chunk_context:
messages.extend([
{"role": "user", "content": ctx["user"]},
{"role": "assistant", "content": ctx["assistant"]}
])
# Add current chunk (this already exists)
messages.append({
"role": "user",
"content": context if context else ""
})
if hasattr(self, 'current_chapter_num'):
chapter_num = self.current_chapter_num
image_idx = getattr(self, 'current_image_index', 0)
output_filename = f"response_{chapter_num:03d}_Chapter_{chapter_num}_image_{image_idx}.html"
self.client.set_output_filename(output_filename)
retry_timeout_enabled = os.getenv("RETRY_TIMEOUT", "1") == "1"
chunk_timeout = int(os.getenv("CHUNK_TIMEOUT", "180")) if retry_timeout_enabled else None
max_timeout_retries = 2
# Store original values
original_max_tokens = self.image_max_tokens
original_temp = self.temperature
# Initialize retry counters
timeout_retry_count = 0
while True:
try:
current_max_tokens = self.image_max_tokens
current_temp = self.temperature
print(f" 🔄 Calling vision API...")
print(f" 📊 Using temperature: {current_temp}")
print(f" 📊 Output Token Limit: {current_max_tokens}")
if chunk_timeout:
print(f" ⏱️ Timeout enabled: {chunk_timeout} seconds")
# Final stop check before API call
if check_stop_fn and check_stop_fn():
print(" ❌ Stopped before API call")
return None
# Use the new interrupt function
translation_response, trans_finish = send_image_with_interrupt(
self.client,
messages,
image_data,
current_temp,
current_max_tokens,
check_stop_fn,
chunk_timeout,
'image_translation'
)
print(f" 📡 API response received, finish_reason: {trans_finish}")
# Check if translation was truncated
if trans_finish in ["length", "max_tokens"]:
print(f" ⚠️ Translation was TRUNCATED! Consider increasing Max tokens.")
translation_response += "\n\n[TRANSLATION TRUNCATED DUE TO TOKEN LIMIT]"
# Success - restore original values if they were changed
if timeout_retry_count > 0:
self.image_max_tokens = original_max_tokens
self.temperature = original_temp
print(f" ✅ Restored original settings after successful retry")
return translation_response.strip()
except Exception as e:
from unified_api_client import UnifiedClientError
error_msg = str(e)
print(f"\n🔍 DEBUG: Image Translation Failed")
print(f" Error: {error_msg}")
print(f" Error Type: {type(e).__name__}")
# Handle user stop
if "stopped by user" in error_msg:
print(" ❌ Image translation stopped by user")
return None
# Handle timeout specifically
if "took" in error_msg and "timeout:" in error_msg:
if timeout_retry_count < max_timeout_retries:
timeout_retry_count += 1
print(f" ⏱️ Chunk took too long, retry {timeout_retry_count}/{max_timeout_retries}")
print(f" 🔄 Retrying")
time.sleep(2)
continue
else:
print(f" ❌ Max timeout retries reached for image")
# Restore original values
self.image_max_tokens = original_max_tokens
self.temperature = original_temp
return f"[Image Translation Error: Timeout after {max_timeout_retries} retries]"
# Handle other timeouts
elif "timed out" in error_msg and "timeout:" not in error_msg:
print(f" ⚠️ {error_msg}, retrying...")
time.sleep(5)
continue
# For other errors, restore values and return error
if timeout_retry_count > 0:
self.image_max_tokens = original_max_tokens
self.temperature = original_temp
print(f" ❌ Translation failed: {e}")
print(f" ❌ Error type: {type(e).__name__}")
return f"[Image Translation Error: {str(e)}]"
def _clean_translation_response(self, response):
"""Clean AI artifacts from translation response while preserving content"""
if not response or not response.strip():
return response
# First, preserve the original response length for debugging
original_length = len(response)
# Remove common AI prefixes - but be more careful
lines = response.split('\n')
# Check if first line is just a prefix without content
if len(lines) > 1 and lines[0].strip() and lines[0].strip().lower() in [
'sure', 'here', "i'll translate", 'certainly', 'okay',
'here is the translation:', 'translation:', "here's the translation:",
"i'll translate the text from the image:", "let me translate that for you:"
]:
# Remove only the first line if it's just a prefix
response = '\n'.join(lines[1:]).strip()
elif len(lines) > 1 and lines[0].strip() and any(
lines[0].strip().lower().startswith(prefix)
for prefix in ['sure,', 'here,', "i'll translate", 'certainly,', 'okay,']
):
# Check if the first line contains actual translation content after the prefix
first_line = lines[0].strip()
# Look for a colon or period that might separate prefix from content
for sep in [':', '.', ',']:
if sep in first_line:
parts = first_line.split(sep, 1)
if len(parts) > 1 and parts[1].strip():
# There's content after the separator, keep it
lines[0] = parts[1].strip()
response = '\n'.join(lines).strip()
break
else:
# No separator found with content, remove the whole first line
response = '\n'.join(lines[1:]).strip()
# Log if we removed significant content
cleaned_length = len(response)
if cleaned_length == 0 and original_length > 0:
print(f" ⚠️ WARNING: Cleaning removed all content! Original: {original_length} chars")
print(f" ⚠️ First 200 chars were: {response[:200]}")
elif cleaned_length < original_length * 0.5:
print(f" ⚠️ WARNING: Cleaning removed >50% of content! {original_length}{cleaned_length}")
return response
def _save_translation_debug(self, image_path, translated_text):
"""Save translation to file for debugging"""
trans_filename = f"translated_{os.path.basename(image_path)}.txt"
trans_filepath = os.path.join(self.translated_images_dir, trans_filename)
try:
with open(trans_filepath, 'w', encoding='utf-8') as f:
f.write(translated_text)
print(f" 💾 Saved translation to: {trans_filename}")
except Exception as e:
print(f" ⚠️ Could not save translation file: {e}")
def _remove_http_links(self, text: str) -> str:
"""Remove HTTP/HTTPS URLs from text while preserving other content"""
# Pattern to match URLs
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*'
# Replace URLs with empty string
cleaned_text = re.sub(url_pattern, '', text)
# Clean up extra whitespace that may result from URL removal
cleaned_text = re.sub(r'\s+', ' ', cleaned_text).strip()
return cleaned_text
def _normalize_unicode_width(self, text: str) -> str:
"""Normalize Unicode width and compatibility forms using NFKC"""
if not text:
return text
try:
import unicodedata
original = text
text = unicodedata.normalize('NFKC', text)
if text != original:
try:
if self.log_callback:
self.log_callback(f"🔤 Normalized width/compat: '{original[:30]}...' → '{text[:30]}...'")
except Exception:
pass
return text
except Exception:
return text
def _sanitize_unicode_characters(self, text: str) -> str:
"""Remove invalid Unicode characters and common fallback boxes"""
if not text:
return text
import re
original = text
# Replacement character and common geometric fallbacks
text = text.replace('\ufffd', '')
for ch in ['□','◇','◆','■','▢','▣','▤','▥','▦','▧','▨','▩']:
text = text.replace(ch, '')
text = re.sub(r'[\u200b-\u200f\u2028-\u202f\u205f-\u206f\ufeff]', '', text)
text = re.sub(r'[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F-\x9F]', '', text)
try:
text = text.encode('utf-8', errors='ignore').decode('utf-8')
except UnicodeError:
pass
# Normalize whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
def _create_html_output(self, img_rel_path, translated_text, is_long_text, hide_label, was_stopped):
print(f" 🔍 DEBUG: Creating HTML output")
print(f" Total translation length: {len(translated_text)} chars")
if len(translated_text) > 50000:
print(f" ⚠️ WARNING: Translation suspiciously large!")
"""Create the final HTML output"""
# Check if the translation is primarily a URL (only a URL and nothing else)
url_pattern = r'https?://[^\s<>"{}|\\^`\[\]]+(?:\.[^\s<>"{}|\\^`\[\]]+)*'
# Check if the entire content is just a URL
url_match = re.match(r'^\s*' + url_pattern + r'\s*$', translated_text.strip())
is_only_url = bool(url_match)
# Build the label HTML if needed
if hide_label:
label_html = ""
# Remove URLs from the text, but keep other content
cleaned_text = self._remove_http_links(translated_text)
# If after removing URLs there's no content left, and original was only URL
if not cleaned_text and is_only_url:
translated_text = "[Image contains only URL]"
else:
# Use the cleaned text (URLs removed, other content preserved)
translated_text = cleaned_text
else:
if was_stopped:
label_html = f'<p><em>(partial)</em></p>\n'
else:
label_html = ""
# Build the image HTML based on type - or skip it entirely if hide_label is enabled
if hide_label:
# Don't include the image at all when hide_label is enabled
image_html = ""
css_class = "translated-text-only"
elif is_long_text:
image_html = f"""<details>
<summary>📖 View Original Image</summary>
<img src="{img_rel_path}" alt="Original image" />
</details>"""
css_class = "image-with-translation webnovel-image"
else:
image_html = f'<img src="{img_rel_path}" alt="Original image" />'
css_class = "image-with-translation"
# Combine everything
return f"""<div class="{css_class}">
{image_html}
<div class="image-translation">
{label_html}{self._format_translation_as_html(translated_text)}
</div>
</div>"""
def _api_delay_with_stop_check(self, check_stop_fn):
"""API delay with stop checking"""
# Check for stop during delay (split into 0.1s intervals)
for i in range(int(self.api_delay * 10)):
if check_stop_fn and check_stop_fn():
return True
time.sleep(0.1)
return False
def _format_translation_as_html(self, text: str) -> str:
"""Format translated text as HTML paragraphs"""
# Convert to string and strip whitespace
text = str(text).strip()
# Remove various tuple wrapping patterns
# Handle complete tuple wrapping
if text.startswith('("') and text.endswith('")'):
text = text[2:-2]
elif text.startswith("('") and text.endswith("')"):
text = text[2:-2]
# Handle incomplete tuple wrapping (like just (" at the start)
elif text.startswith('("'):
text = text[2:]
elif text.startswith("('"):
text = text[2:]
elif text.startswith('('):
# Check if it looks like a tuple representation
if len(text) > 1 and text[1] in ['"', "'"]:
text = text[2:] # Remove (" or ('
else:
text = text[1:] # Just remove the (
# Remove trailing tuple markers if present
if text.endswith('")'):
text = text[:-2]
elif text.endswith("')"):
text = text[:-2]
elif text.endswith(')') and len(text) > 1 and text[-2] in ['"', "'"]:
text = text[:-2]
# Ensure we have actual newlines, not escaped ones
if '\\n' in text:
print(f" 🔧 Found literal \\n in text, converting to actual newlines")
text = text.replace('\\n', '\n')
# Split by double newlines for paragraphs
paragraphs = text.split('\n\n')
html_parts = []
for para in paragraphs:
para = para.strip()
if para:
# Check if it's dialogue (starts with quotes)
if para.startswith(('"', '"', '「', '『', '"')):
html_parts.append(f'<p class="dialogue">{para}</p>')
else:
html_parts.append(f'<p>{para}</p>')
# If no paragraphs were created (single line), wrap it
if not html_parts and text.strip():
html_parts.append(f'<p>{text.strip()}</p>')
result = '\n'.join(html_parts)
# Debug output
print(f" 📝 Created {len(html_parts)} paragraphs from text")
return result
def _unescape_response_text(self, text):
"""Unescape text that comes back with literal \n characters"""
if not text:
return text
# Convert to string if needed
text = str(text)
# Remove tuple wrapping if present (e.g., ('text') or ("text"))
if text.startswith('("') and text.endswith('")'):
text = text[2:-2]
elif text.startswith("('") and text.endswith("')"):
text = text[2:-2]
elif text.startswith('(') and text.endswith(')') and len(text) > 2:
# Check if it's a single-item tuple representation
inner = text[1:-1].strip()
if (inner.startswith('"') and inner.endswith('"')) or (inner.startswith("'") and inner.endswith("'")):
text = inner[1:-1]
# Handle escaped characters - convert literal \n to actual newlines
text = text.replace('\\n', '\n')
text = text.replace('\\t', '\t')
text = text.replace('\\"', '"')
text = text.replace("\\'", "'")
text = text.replace('\\\\', '\\')
return text
def update_chapter_with_translated_images(self, chapter_html: str, image_translations: Dict[str, str]) -> str:
"""
Update chapter HTML to include image translations
Args:
chapter_html: Original chapter HTML
image_translations: Dict mapping original image paths to translation HTML
Returns:
Updated HTML
"""
soup = BeautifulSoup(chapter_html, 'html.parser')
for img in soup.find_all('img'):
src = img.get('src', '')
if src in image_translations:
# Replace the img tag with the translation HTML
translation_html = image_translations[src]
new_element = BeautifulSoup(translation_html, 'html.parser')
img.replace_with(new_element)
return str(soup)
def save_translation_log(self, chapter_num: int, translations: Dict[str, str]):
"""
Save a log of all translations for a chapter
Args:
chapter_num: Chapter number
translations: Dict of image path to translated text
"""
if not translations:
return
log_dir = os.path.join(self.translated_images_dir, 'logs')
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f'chapter_{chapter_num}_translations.json')
log_data = {
'chapter': chapter_num,
'timestamp': os.environ.get('TZ', 'UTC'),
'translations': {}
}
for img_path, translation in translations.items():
# Extract just the text from HTML if needed
if '<div class="image-translation">' in translation:
soup = BeautifulSoup(translation, 'html.parser')
text_div = soup.find('div', class_='image-translation')
if text_div:
# Remove the header paragraph
header = text_div.find('p')
if header and ('(partial)' in header.text or '[Image text translation' in header.text):
header.decompose()
text = text_div.get_text(separator='\n').strip()
else:
text = translation
else:
text = translation
log_data['translations'][os.path.basename(img_path)] = text
with open(log_file, 'w', encoding='utf-8') as f:
json.dump(log_data, f, ensure_ascii=False, indent=2)
print(f" 📝 Saved translation log: {os.path.basename(log_file)}")