Glossarion / ocr_manager.py
Shirochi's picture
Upload 7 files
f66ccd1 verified
# ocr_manager.py
"""
OCR Manager for handling multiple OCR providers
Handles installation, model downloading, and OCR processing
Updated with HuggingFace donut model and proper bubble detection integration
"""
import os
import sys
import cv2
import json
import subprocess
import threading
import traceback
from typing import List, Dict, Optional, Tuple, Any
import numpy as np
from dataclasses import dataclass
from PIL import Image
import logging
import time
import random
import base64
import io
import requests
try:
import gptqmodel
HAS_GPTQ = True
except ImportError:
try:
import auto_gptq
HAS_GPTQ = True
except ImportError:
HAS_GPTQ = False
try:
import optimum
HAS_OPTIMUM = True
except ImportError:
HAS_OPTIMUM = False
try:
import accelerate
HAS_ACCELERATE = True
except ImportError:
HAS_ACCELERATE = False
logger = logging.getLogger(__name__)
@dataclass
class OCRResult:
"""Unified OCR result format with built-in sanitization to prevent data corruption."""
text: str
bbox: Tuple[int, int, int, int] # x, y, w, h
confidence: float
vertices: Optional[List[Tuple[int, int]]] = None
def __post_init__(self):
"""
This special method is called automatically after the object is created.
It acts as a final safeguard to ensure the 'text' attribute is ALWAYS a clean string.
"""
# --- THIS IS THE DEFINITIVE FIX ---
# If the text we received is a tuple, we extract the first element.
# This makes it impossible for a tuple to exist in a finished object.
if isinstance(self.text, tuple):
# Log that we are fixing a critical data error.
print(f"CRITICAL WARNING: Corrupted tuple detected in OCRResult. Sanitizing '{self.text}' to '{self.text[0]}'.")
self.text = self.text[0]
# Ensure the final result is always a stripped string.
self.text = str(self.text).strip()
class OCRProvider:
"""Base class for OCR providers"""
def __init__(self, log_callback=None):
# Set thread limits early if environment indicates single-threaded mode
try:
if os.environ.get('OMP_NUM_THREADS') == '1':
# Already in single-threaded mode, ensure it's applied to this process
try:
import sys
if 'torch' in sys.modules:
import torch
torch.set_num_threads(1)
except (ImportError, RuntimeError, AttributeError):
pass
try:
import cv2
cv2.setNumThreads(1)
except (ImportError, AttributeError):
pass
except Exception:
pass
self.log_callback = log_callback
self.is_installed = False
self.is_loaded = False
self.model = None
self.stop_flag = None
self._stopped = False
def _log(self, message: str, level: str = "info"):
"""Log message with stop suppression"""
# Suppress logs when stopped (allow only essential stop confirmation messages)
if self._check_stop():
essential_stop_keywords = [
"⏹️ Translation stopped by user",
"⏹️ OCR processing stopped",
"cleanup", "🧹"
]
if not any(keyword in message for keyword in essential_stop_keywords):
return
if self.log_callback:
self.log_callback(message, level)
else:
print(f"[{level.upper()}] {message}")
def set_stop_flag(self, stop_flag):
"""Set the stop flag for checking interruptions"""
self.stop_flag = stop_flag
self._stopped = False
def _check_stop(self) -> bool:
"""Check if stop has been requested"""
if self._stopped:
return True
if self.stop_flag and self.stop_flag.is_set():
self._stopped = True
return True
# Check global manga translator cancellation
try:
from manga_translator import MangaTranslator
if MangaTranslator.is_globally_cancelled():
self._stopped = True
return True
except Exception:
pass
return False
def reset_stop_flags(self):
"""Reset stop flags when starting new processing"""
self._stopped = False
def check_installation(self) -> bool:
"""Check if provider is installed"""
raise NotImplementedError
def install(self, progress_callback=None) -> bool:
"""Install the provider"""
raise NotImplementedError
def load_model(self, **kwargs) -> bool:
"""Load the OCR model"""
raise NotImplementedError
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text in image"""
raise NotImplementedError
class CustomAPIProvider(OCRProvider):
"""Custom API OCR provider that uses existing GUI variables"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
# Use EXISTING environment variables from TranslatorGUI
self.api_url = os.environ.get('OPENAI_CUSTOM_BASE_URL', '')
self.api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
self.model_name = os.environ.get('MODEL', 'gpt-4o-mini')
# OCR prompt - use system prompt or a dedicated OCR prompt variable
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
os.environ.get('SYSTEM_PROMPT',
"YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n"
"ABSOLUTE RULES:\n"
"1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n"
"2. NEVER TRANSLATE OR MODIFY\n"
"3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n"
"4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n"
"5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n"
"6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n"
"7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n"
"8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n"
"LANGUAGE PRESERVATION:\n"
"- Korean text → Output in Korean\n"
"- Japanese text → Output in Japanese\n"
"- Chinese text → Output in Chinese\n"
"- English text → Output in English\n"
"- CJK quotation marks (「」『』【】《》〈〉) → Preserve exactly as shown\n\n"
"FORMATTING:\n"
"- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n"
"- NEVER use \\n or line breaks in your output\n\n"
"FORBIDDEN RESPONSES:\n"
"- \"I can see this appears to be...\"\n"
"- \"I cannot make out any clear text...\"\n"
"- \"This appears to be blank...\"\n"
"- \"If there is text present...\"\n"
"- ANY explanatory text\n\n"
"YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n"
"If image has a dot → Output: .\n"
"If image has two dots → Output: . .\n"
"If image has text → Output: [that text]\n"
"If image is truly blank → Output: [empty/no response]"
))
# Use existing temperature and token settings
self.temperature = float(os.environ.get('TRANSLATION_TEMPERATURE', '0.01'))
# NOTE: max_tokens is NOT cached here - it's read fresh from environment in detect_text()
# to ensure we always get the latest value from the GUI
# Image settings from existing compression variables
self.image_format = 'jpeg' if os.environ.get('IMAGE_COMPRESSION_FORMAT', 'auto') != 'png' else 'png'
self.image_quality = int(os.environ.get('JPEG_QUALITY', '100'))
# Simple defaults
self.api_format = 'openai' # Most custom endpoints are OpenAI-compatible
self.timeout = int(os.environ.get('CHUNK_TIMEOUT', '30'))
self.api_headers = {} # Additional custom headers
# Retry configuration for Custom API OCR calls
self.max_retries = int(os.environ.get('CUSTOM_OCR_MAX_RETRIES', '3'))
self.retry_initial_delay = float(os.environ.get('CUSTOM_OCR_RETRY_INITIAL_DELAY', '0.8'))
self.retry_backoff = float(os.environ.get('CUSTOM_OCR_RETRY_BACKOFF', '1.8'))
self.retry_jitter = float(os.environ.get('CUSTOM_OCR_RETRY_JITTER', '0.4'))
self.retry_on_empty = os.environ.get('CUSTOM_OCR_RETRY_ON_EMPTY', '1') == '1'
def check_installation(self) -> bool:
"""Always installed - uses UnifiedClient"""
self.is_installed = True
return True
def install(self, progress_callback=None) -> bool:
"""No installation needed for API-based provider"""
return self.check_installation()
def load_model(self, **kwargs) -> bool:
"""Initialize UnifiedClient with current settings"""
try:
from unified_api_client import UnifiedClient
# Support passing API key from GUI if available
if 'api_key' in kwargs:
api_key = kwargs['api_key']
else:
api_key = os.environ.get('API_KEY', '') or os.environ.get('OPENAI_API_KEY', '')
if 'model' in kwargs:
model = kwargs['model']
else:
model = os.environ.get('MODEL', 'gpt-4o-mini')
if not api_key:
self._log("❌ No API key configured", "error")
return False
# Create UnifiedClient just like translations do
self.client = UnifiedClient(model=model, api_key=api_key)
#self._log(f"✅ Using {model} for OCR via UnifiedClient")
self.is_loaded = True
return True
except Exception as e:
self._log(f"❌ Failed to initialize UnifiedClient: {str(e)}", "error")
return False
def _test_connection(self) -> bool:
"""Test API connection with a simple request"""
try:
# Create a small test image
test_image = np.ones((100, 100, 3), dtype=np.uint8) * 255
cv2.putText(test_image, "TEST", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)
# Encode image
image_base64 = self._encode_image(test_image)
# Prepare test request based on API format
if self.api_format == 'openai':
test_payload = {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": "What text do you see?"},
{"type": "image_url", "image_url": {"url": f"data:image/{self.image_format};base64,{image_base64}"}}
]
}
],
"max_tokens": 50
}
else:
# For other formats, just try a basic health check
return True
headers = self._prepare_headers()
response = requests.post(
self.api_url,
headers=headers,
json=test_payload,
timeout=10
)
return response.status_code == 200
except Exception:
return False
def _encode_image(self, image: np.ndarray) -> str:
"""Encode numpy array to base64 string"""
# Convert BGR to RGB if needed
if len(image.shape) == 3 and image.shape[2] == 3:
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
# Convert to PIL Image
pil_image = Image.fromarray(image_rgb)
# Save to bytes buffer
buffer = io.BytesIO()
if self.image_format.lower() == 'png':
pil_image.save(buffer, format='PNG')
else:
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
# Encode to base64
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
return image_base64
def _prepare_headers(self) -> dict:
"""Prepare request headers"""
headers = {
"Content-Type": "application/json"
}
# Add API key if configured
if self.api_key:
if self.api_format == 'anthropic':
headers["x-api-key"] = self.api_key
else:
headers["Authorization"] = f"Bearer {self.api_key}"
# Add any custom headers
headers.update(self.api_headers)
return headers
def _prepare_request_payload(self, image_base64: str) -> dict:
"""Prepare request payload based on API format"""
if self.api_format == 'openai':
return {
"model": self.model_name,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": self.ocr_prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/{self.image_format};base64,{image_base64}"
}
}
]
}
],
"max_tokens": self.max_tokens,
"temperature": self.temperature
}
elif self.api_format == 'anthropic':
return {
"model": self.model_name,
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": self.ocr_prompt
},
{
"type": "image",
"source": {
"type": "base64",
"media_type": f"image/{self.image_format}",
"data": image_base64
}
}
]
}
]
}
else:
# Custom format - use environment variable for template
template = os.environ.get('CUSTOM_OCR_REQUEST_TEMPLATE', '{}')
payload = json.loads(template)
# Replace placeholders
payload_str = json.dumps(payload)
payload_str = payload_str.replace('{{IMAGE_BASE64}}', image_base64)
payload_str = payload_str.replace('{{PROMPT}}', self.ocr_prompt)
payload_str = payload_str.replace('{{MODEL}}', self.model_name)
payload_str = payload_str.replace('{{MAX_TOKENS}}', str(self.max_tokens))
payload_str = payload_str.replace('{{TEMPERATURE}}', str(self.temperature))
return json.loads(payload_str)
def _extract_text_from_response(self, response_data: dict) -> str:
"""Extract text from API response based on format"""
try:
if self.api_format == 'openai':
# OpenAI format: response.choices[0].message.content
return response_data.get('choices', [{}])[0].get('message', {}).get('content', '')
elif self.api_format == 'anthropic':
# Anthropic format: response.content[0].text
content = response_data.get('content', [])
if content and isinstance(content, list):
return content[0].get('text', '')
return ''
else:
# Custom format - use environment variable for path
response_path = os.environ.get('CUSTOM_OCR_RESPONSE_PATH', 'text')
# Navigate through the response using the path
result = response_data
for key in response_path.split('.'):
if isinstance(result, dict):
result = result.get(key, '')
elif isinstance(result, list) and key.isdigit():
idx = int(key)
result = result[idx] if idx < len(result) else ''
else:
result = ''
break
return str(result)
except Exception as e:
self._log(f"Failed to extract text from response: {e}", "error")
return ''
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Process image using UnifiedClient.send_image()"""
results = []
try:
# CRITICAL: Reload OCR prompt from environment before each detection
# This ensures we use the latest prompt set by manga_integration.py
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT', self.ocr_prompt)
# Get fresh max_tokens from environment - GUI will have set this
max_tokens = int(os.environ.get('MAX_OUTPUT_TOKENS', '8192'))
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
import base64
import io
# Validate and resize image if too small (consistent with Google/Azure logic)
h, w = image.shape[:2]
MIN_SIZE = 50 # Minimum dimension for good OCR quality
MIN_AREA = 2500 # Minimum area (50x50)
# Skip completely invalid/corrupted images (0 or negative dimensions)
if h <= 0 or w <= 0:
self._log(f"⚠️ Invalid image dimensions ({w}x{h}px), skipping", "warning")
return results
if h < MIN_SIZE or w < MIN_SIZE or h * w < MIN_AREA:
# Image too small - resize it
scale_w = MIN_SIZE / w if w < MIN_SIZE else 1.0
scale_h = MIN_SIZE / h if h < MIN_SIZE else 1.0
scale = max(scale_w, scale_h)
if scale > 1.0:
new_w = int(w * scale)
new_h = int(h * scale)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
self._log(f"🔍 Image resized from {w}x{h}px to {new_w}x{new_h}px for Custom API OCR", "debug")
h, w = new_h, new_w
# Convert numpy array to PIL Image
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
# Convert PIL Image to base64 string
buffer = io.BytesIO()
# Use the image format from settings
if self.image_format.lower() == 'png':
pil_image.save(buffer, format='PNG')
else:
pil_image.save(buffer, format='JPEG', quality=self.image_quality)
buffer.seek(0)
image_base64 = base64.b64encode(buffer.read()).decode('utf-8')
# For OpenAI vision models, we need BOTH:
# 1. System prompt with instructions
# 2. User message that includes the image
messages = [
{
"role": "system",
"content": self.ocr_prompt # The OCR instruction as system prompt
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Image:" # Minimal text, just to have something
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{image_base64}"
}
}
]
}
]
# Now send this properly formatted message
# The UnifiedClient should handle this correctly
# But we're NOT using send_image, we're using regular send
# Retry-aware call
from unified_api_client import UnifiedClientError # local import to avoid hard dependency at module import time
max_attempts = max(1, self.max_retries)
attempt = 0
last_error = None
# Common refusal/error phrases that indicate a non-OCR response (expanded list)
refusal_phrases = [
"I can't extract", "I cannot extract",
"I'm sorry", "I am sorry",
"I'm unable", "I am unable",
"cannot process images",
"I can't help with that",
"cannot view images",
"no text in the image",
"I can see this appears",
"I cannot make out",
"appears to be blank",
"appears to be a mostly blank",
"mostly blank or white image",
"If there is text present",
"too small, faint, or unclear",
"cannot accurately extract",
"may be too",
"However, I cannot",
"I don't see any",
"no clear text",
"no visible text",
"does not contain",
"doesn't contain",
"I do not see"
]
while attempt < max_attempts:
# Check for stop before each attempt
if self._check_stop():
self._log("⏹️ OCR processing stopped by user", "warning")
return results
try:
response = self.client.send(
messages=messages,
temperature=self.temperature,
max_tokens=max_tokens
)
# Extract content from response object
content, finish_reason = response
# Validate content
has_content = bool(content and str(content).strip())
refused = False
if has_content:
# Filter out explicit failure markers
if "[" in content and "FAILED]" in content:
refused = True
elif any(phrase.lower() in content.lower() for phrase in refusal_phrases):
refused = True
# Decide success or retry
if has_content and not refused:
text = str(content).strip()
results.append(OCRResult(
text=text,
bbox=(0, 0, w, h),
confidence=kwargs.get('confidence', 0.85),
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
self._log(f"✅ Detected: {text[:50]}...")
break # success
else:
reason = "empty result" if not has_content else "refusal/non-OCR response"
last_error = f"{reason} (finish_reason: {finish_reason})"
# Check if we should retry on empty or refusal
should_retry = (not has_content and self.retry_on_empty) or refused
attempt += 1
if attempt >= max_attempts or not should_retry:
# No more retries or shouldn't retry
if not has_content:
self._log(f"⚠️ No text detected (finish_reason: {finish_reason})")
else:
self._log(f"❌ Model returned non-OCR response: {str(content)[:120]}", "warning")
break
# Backoff before retrying
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"🔄 Retry {attempt}/{max_attempts - 1} after {delay:.1f}s due to {reason}...", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("💤 OCR retry pausing briefly for stability", "debug")
continue
except UnifiedClientError as ue:
msg = str(ue)
last_error = msg
# Do not retry on explicit user cancellation
if 'cancelled' in msg.lower() or 'stopped by user' in msg.lower():
self._log(f"❌ OCR cancelled: {msg}", "error")
break
attempt += 1
if attempt >= max_attempts:
self._log(f"❌ OCR failed after {attempt} attempts: {msg}", "error")
break
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"🔄 API error, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {msg}", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("💤 OCR API error retry pausing briefly for stability", "debug")
continue
except Exception as e_inner:
last_error = str(e_inner)
attempt += 1
if attempt >= max_attempts:
self._log(f"❌ OCR exception after {attempt} attempts: {last_error}", "error")
break
delay = self.retry_initial_delay * (self.retry_backoff ** (attempt - 1)) + random.uniform(0, self.retry_jitter)
self._log(f"🔄 Exception, retry {attempt}/{max_attempts - 1} after {delay:.1f}s: {last_error}", "warning")
time.sleep(delay)
time.sleep(0.1) # Brief pause for stability
self._log("💤 OCR exception retry pausing briefly for stability", "debug")
continue
except Exception as e:
self._log(f"❌ Error: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
class MangaOCRProvider(OCRProvider):
"""Manga OCR provider using HuggingFace model directly"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
self.processor = None
self.model = None
self.tokenizer = None
def check_installation(self) -> bool:
"""Check if transformers is installed"""
try:
import transformers
import torch
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install transformers and torch"""
pass
def _is_valid_local_model_dir(self, path: str) -> bool:
"""Check that a local HF model directory has required files."""
try:
if not path or not os.path.isdir(path):
return False
needed_any_weights = any(
os.path.exists(os.path.join(path, name)) for name in (
'pytorch_model.bin',
'model.safetensors'
)
)
has_config = os.path.exists(os.path.join(path, 'config.json'))
has_processor = (
os.path.exists(os.path.join(path, 'preprocessor_config.json')) or
os.path.exists(os.path.join(path, 'processor_config.json'))
)
has_tokenizer = (
os.path.exists(os.path.join(path, 'tokenizer.json')) or
os.path.exists(os.path.join(path, 'tokenizer_config.json'))
)
return has_config and needed_any_weights and has_processor and has_tokenizer
except Exception:
return False
def load_model(self, **kwargs) -> bool:
"""Load the manga-ocr model, preferring a local directory to avoid re-downloading"""
print("\n>>> MangaOCRProvider.load_model() called")
try:
if not self.is_installed and not self.check_installation():
print("ERROR: Transformers not installed")
self._log("❌ Transformers not installed", "error")
return False
# Always disable progress bars to avoid tqdm issues in some environments
import os
os.environ.setdefault("HF_HUB_DISABLE_PROGRESS_BARS", "1")
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoImageProcessor
import torch
# Prefer a local model directory if present to avoid any Hub access
candidates = []
env_local = os.environ.get("MANGA_OCR_LOCAL_DIR")
if env_local:
candidates.append(env_local)
# Project root one level up from this file
root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
candidates.append(os.path.join(root_dir, 'models', 'manga-ocr-base'))
candidates.append(os.path.join(root_dir, 'models', 'kha-white', 'manga-ocr-base'))
model_source = None
local_only = False
# Find a valid local dir
for cand in candidates:
if self._is_valid_local_model_dir(cand):
model_source = cand
local_only = True
break
# If no valid local dir, use Hub
if not model_source:
model_source = "kha-white/manga-ocr-base"
# Make sure we are not forcing offline mode
if os.environ.get("HF_HUB_OFFLINE") == "1":
try:
del os.environ["HF_HUB_OFFLINE"]
except Exception:
pass
self._log("🔥 Loading manga-ocr model from Hugging Face Hub")
self._log(f" Repo: {model_source}")
else:
# Only set offline when local dir is fully valid
os.environ.setdefault("HF_HUB_OFFLINE", "1")
self._log("🔥 Loading manga-ocr model from local directory")
self._log(f" Local path: {model_source}")
# Decide target device once; we will move after full CPU load to avoid meta tensors
use_cuda = torch.cuda.is_available()
# Try loading components, falling back to Hub if local-only fails
def _load_components(source: str, local_flag: bool):
self._log(" Loading tokenizer...")
tok = AutoTokenizer.from_pretrained(source, local_files_only=local_flag)
self._log(" Loading image processor...")
try:
from transformers import AutoProcessor
except Exception:
AutoProcessor = None
try:
proc = AutoImageProcessor.from_pretrained(source, local_files_only=local_flag)
except Exception as e_proc:
if AutoProcessor is not None:
self._log(f" ⚠️ AutoImageProcessor failed: {e_proc}. Trying AutoProcessor...", "warning")
proc = AutoProcessor.from_pretrained(source, local_files_only=local_flag)
else:
raise
self._log(" Loading model...")
# Prevent meta tensors by forcing full materialization on CPU at load time
os.environ.setdefault('TORCHDYNAMO_DISABLE', '1')
mdl = VisionEncoderDecoderModel.from_pretrained(
source,
local_files_only=local_flag,
low_cpu_mem_usage=False,
device_map=None,
torch_dtype=torch.float32 # Use torch_dtype instead of dtype
)
return tok, proc, mdl
try:
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
except Exception as e_local:
if local_only:
# Fallback to Hub once if local fails
self._log(f" ⚠️ Local model load failed: {e_local}", "warning")
try:
if os.environ.get("HF_HUB_OFFLINE") == "1":
del os.environ["HF_HUB_OFFLINE"]
except Exception:
pass
model_source = "kha-white/manga-ocr-base"
local_only = False
self._log(" Retrying from Hugging Face Hub...")
self.tokenizer, self.processor, self.model = _load_components(model_source, local_only)
else:
raise
# Move to CUDA only after full CPU materialization
target_device = 'cpu'
if use_cuda:
try:
self.model = self.model.to('cuda')
target_device = 'cuda'
except Exception as move_err:
self._log(f" ⚠️ Could not move model to CUDA: {move_err}", "warning")
target_device = 'cpu'
# Finalize eval mode
self.model.eval()
# Sanity-check: ensure no parameter remains on 'meta' device
try:
for n, p in self.model.named_parameters():
dev = getattr(p, 'device', None)
if dev is not None and getattr(dev, 'type', '') == 'meta':
raise RuntimeError(f"Parameter {n} is on 'meta' after load")
except Exception as sanity_err:
self._log(f"❌ Manga-OCR model load sanity check failed: {sanity_err}", "error")
return False
print(f"SUCCESS: Model loaded on {target_device.upper()}")
self._log(f" ✅ Model loaded on {target_device.upper()}")
self.is_loaded = True
self._log("✅ Manga OCR model ready")
print(">>> Returning True from load_model()")
return True
except Exception as e:
print(f"\nEXCEPTION in load_model: {e}")
import traceback
print(traceback.format_exc())
self._log(f"❌ Failed to load manga-ocr model: {str(e)}", "error")
self._log(traceback.format_exc(), "error")
try:
if 'local_only' in locals() and local_only:
self._log("Hint: Local load failed. Ensure your models/manga-ocr-base contains required files (config.json, preprocessor_config.json, tokenizer.json or tokenizer_config.json, and model weights).", "warning")
except Exception:
pass
return False
def _run_ocr(self, pil_image):
"""Run OCR on a PIL image using the HuggingFace model"""
import torch
# Process image (keyword arg for broader compatibility across transformers versions)
inputs = self.processor(images=pil_image, return_tensors="pt")
pixel_values = inputs["pixel_values"]
# Move to same device as model
try:
model_device = next(self.model.parameters()).device
except StopIteration:
model_device = torch.device('cpu')
pixel_values = pixel_values.to(model_device)
# Generate text
with torch.no_grad():
generated_ids = self.model.generate(pixel_values)
# Decode
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""
Process the image region passed to it.
This could be a bubble region or the full image.
"""
results = []
# Check for stop at start
if self._check_stop():
self._log("⏹️ Manga-OCR processing stopped by user", "warning")
return results
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
# Get confidence from kwargs
confidence = kwargs.get('confidence', 0.7)
# Convert numpy array to PIL
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
h, w = image.shape[:2]
self._log("🔍 Processing region with manga-ocr...")
# Check for stop before inference
if self._check_stop():
self._log("⏹️ Manga-OCR inference stopped by user", "warning")
return results
# Run OCR on the image region
text = self._run_ocr(pil_image)
if text and text.strip():
# Return result for this region with its actual bbox
results.append(OCRResult(
text=text.strip(),
bbox=(0, 0, w, h), # Relative to the region passed in
confidence=confidence,
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
self._log(f"✅ Detected text: {text[:50]}...")
except Exception as e:
self._log(f"❌ Error in manga-ocr: {str(e)}", "error")
return results
class Qwen2VL(OCRProvider):
"""OCR using Qwen2-VL - Vision Language Model that can read Korean text"""
def __init__(self, log_callback=None):
super().__init__(log_callback)
self.processor = None
self.model = None
self.tokenizer = None
# Get OCR prompt from environment or use default (UPDATED: Improved prompt)
self.ocr_prompt = os.environ.get('OCR_SYSTEM_PROMPT',
"YOU ARE A TEXT EXTRACTION MACHINE. EXTRACT EXACTLY WHAT YOU SEE.\n\n"
"ABSOLUTE RULES:\n"
"1. OUTPUT ONLY THE VISIBLE TEXT/SYMBOLS - NOTHING ELSE\n"
"2. NEVER TRANSLATE OR MODIFY\n"
"3. NEVER EXPLAIN, DESCRIBE, OR COMMENT\n"
"4. NEVER SAY \"I can't\" or \"I cannot\" or \"no text\" or \"blank image\"\n"
"5. IF YOU SEE DOTS, OUTPUT THE DOTS: .\n"
"6. IF YOU SEE PUNCTUATION, OUTPUT THE PUNCTUATION\n"
"7. IF YOU SEE A SINGLE CHARACTER, OUTPUT THAT CHARACTER\n"
"8. IF YOU SEE NOTHING, OUTPUT NOTHING (empty response)\n\n"
"LANGUAGE PRESERVATION:\n"
"- Korean text → Output in Korean\n"
"- Japanese text → Output in Japanese\n"
"- Chinese text → Output in Chinese\n"
"- English text → Output in English\n"
"- CJK quotation marks (「」『』【】《》〈〉) → Preserve exactly as shown\n\n"
"FORMATTING:\n"
"- OUTPUT ALL TEXT ON A SINGLE LINE WITH NO LINE BREAKS\n"
"- NEVER use \\n or line breaks in your output\n\n"
"FORBIDDEN RESPONSES:\n"
"- \"I can see this appears to be...\"\n"
"- \"I cannot make out any clear text...\"\n"
"- \"This appears to be blank...\"\n"
"- \"If there is text present...\"\n"
"- ANY explanatory text\n\n"
"YOUR ONLY OUTPUT: The exact visible text. Nothing more. Nothing less.\n"
"If image has a dot → Output: .\n"
"If image has two dots → Output: . .\n"
"If image has text → Output: [that text]\n"
"If image is truly blank → Output: [empty/no response]"
)
def set_ocr_prompt(self, prompt: str):
"""Allow setting the OCR prompt dynamically"""
self.ocr_prompt = prompt
def check_installation(self) -> bool:
"""Check if required packages are installed"""
try:
import transformers
import torch
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install requirements for Qwen2-VL"""
pass
def load_model(self, model_size=None, **kwargs) -> bool:
"""Load Qwen2-VL model with size selection"""
self._log(f"DEBUG: load_model called with model_size={model_size}")
try:
if not self.is_installed and not self.check_installation():
self._log("❌ Not installed", "error")
return False
self._log("🔥 Loading Qwen2-VL for Advanced OCR...")
from transformers import AutoProcessor, AutoTokenizer
import torch
# Model options
model_options = {
"1": "Qwen/Qwen2-VL-2B-Instruct",
"2": "Qwen/Qwen2-VL-7B-Instruct",
"3": "Qwen/Qwen2-VL-72B-Instruct",
"4": "custom"
}
# CHANGE: Default to 7B instead of 2B
# Check for saved preference first
if model_size is None:
# Try to get from environment or config
import os
model_size = os.environ.get('QWEN2VL_MODEL_SIZE', '1')
# Determine which model to load
if model_size and str(model_size).startswith("custom:"):
# Custom model passed with ID
model_id = str(model_size).replace("custom:", "")
self.loaded_model_size = "Custom"
self.model_id = model_id
self._log(f"Loading custom model: {model_id}")
elif model_size == "4":
# Custom option selected but no ID - shouldn't happen
self._log("❌ Custom model selected but no ID provided", "error")
return False
elif model_size and str(model_size) in model_options:
# Standard model option
option = model_options[str(model_size)]
if option == "custom":
self._log("❌ Custom model needs an ID", "error")
return False
model_id = option
# Set loaded_model_size for status display
if model_size == "1":
self.loaded_model_size = "2B"
elif model_size == "2":
self.loaded_model_size = "7B"
elif model_size == "3":
self.loaded_model_size = "72B"
else:
# CHANGE: Default to 7B (option "2") instead of 2B
model_id = model_options["1"] # Changed from "1" to "2"
self.loaded_model_size = "2B" # Changed from "2B" to "7B"
self._log("No model size specified, defaulting to 2B") # Changed message
self._log(f"Loading model: {model_id}")
# Load processor and tokenizer
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# Load the model - let it figure out the class dynamically
if torch.cuda.is_available():
self._log(f"GPU: {torch.cuda.get_device_name(0)}")
# Use auto model class
from transformers import AutoModelForVision2Seq
self.model = AutoModelForVision2Seq.from_pretrained(
model_id,
dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
self._log("✅ Model loaded on GPU")
else:
self._log("Loading on CPU...")
from transformers import AutoModelForVision2Seq
self.model = AutoModelForVision2Seq.from_pretrained(
model_id,
dtype=torch.float32,
trust_remote_code=True
)
self._log("✅ Model loaded on CPU")
self.model.eval()
self.is_loaded = True
self._log("✅ Qwen2-VL ready for Advanced OCR!")
return True
except Exception as e:
self._log(f"❌ Failed to load: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Process image with Qwen2-VL for Korean text extraction"""
results = []
if hasattr(self, 'model_id'):
self._log(f"DEBUG: Using model: {self.model_id}", "debug")
# Check if OCR prompt was passed in kwargs (for dynamic updates)
if 'ocr_prompt' in kwargs:
self.ocr_prompt = kwargs['ocr_prompt']
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
from PIL import Image
import torch
# Convert to PIL
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
h, w = image.shape[:2]
self._log(f"🔍 Processing with Qwen2-VL ({w}x{h} pixels)...")
# Use the configurable OCR prompt
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": pil_image,
},
{
"type": "text",
"text": self.ocr_prompt # Use the configurable prompt
}
]
}
]
# Alternative simpler prompt if the above still causes issues:
# "text": "OCR: Extract text as-is"
# Process with Qwen2-VL
text = self.processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.processor(
text=[text],
images=[pil_image],
padding=True,
return_tensors="pt"
)
# Get the device and dtype the model is currently on
model_device = next(self.model.parameters()).device
model_dtype = next(self.model.parameters()).dtype
# Move inputs to the same device as the model and cast float tensors to model dtype
try:
# Move first
inputs = inputs.to(model_device)
# Then align dtypes only for floating tensors (e.g., pixel_values)
for k, v in inputs.items():
if isinstance(v, torch.Tensor) and torch.is_floating_point(v):
inputs[k] = v.to(model_dtype)
except Exception:
# Fallback: ensure at least pixel_values is correct if present
try:
if isinstance(inputs, dict) and "pixel_values" in inputs:
pv = inputs["pixel_values"].to(model_device)
if torch.is_floating_point(pv):
inputs["pixel_values"] = pv.to(model_dtype)
except Exception:
pass
# Ensure pixel_values explicitly matches model dtype if present
try:
if isinstance(inputs, dict) and "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(device=model_device, dtype=model_dtype)
except Exception:
pass
# Generate text with stricter parameters to avoid creative responses
use_amp = (hasattr(torch, 'cuda') and model_device.type == 'cuda' and model_dtype in (torch.float16, torch.bfloat16))
autocast_dev = 'cuda' if model_device.type == 'cuda' else 'cpu'
autocast_dtype = model_dtype if model_dtype in (torch.float16, torch.bfloat16) else None
with torch.no_grad():
if use_amp and autocast_dtype is not None:
with torch.autocast(autocast_dev, dtype=autocast_dtype):
generated_ids = self.model.generate(
**inputs,
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
do_sample=False, # Keep deterministic
temperature=0.01, # Keep your very low temperature
top_p=1.0, # Keep no nucleus sampling
repetition_penalty=1.0, # Keep no repetition penalty
num_beams=1, # Ensure greedy decoding (faster than beam search)
use_cache=True, # Enable KV cache for speed
early_stopping=True, # Stop at EOS token
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
)
else:
generated_ids = self.model.generate(
**inputs,
max_new_tokens=128, # Reduced from 512 - manga bubbles are typically short
do_sample=False, # Keep deterministic
temperature=0.01, # Keep your very low temperature
top_p=1.0, # Keep no nucleus sampling
repetition_penalty=1.0, # Keep no repetition penalty
num_beams=1, # Ensure greedy decoding (faster than beam search)
use_cache=True, # Enable KV cache for speed
early_stopping=True, # Stop at EOS token
pad_token_id=self.tokenizer.pad_token_id, # Proper padding
eos_token_id=self.tokenizer.eos_token_id, # Proper stopping
)
# Decode the output
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = self.processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)[0]
if output_text and output_text.strip():
text = output_text.strip()
# ADDED: Filter out any response that looks like an explanation or apology
# Common patterns that indicate the model is being "helpful" instead of just extracting
unwanted_patterns = [
"죄송합니다", # "I apologize"
"sorry",
"apologize",
"이미지에는", # "in this image"
"텍스트가 없습니다", # "there is no text"
"I cannot",
"I don't see",
"There is no",
"질문이 있으시면", # "if you have questions"
]
# Check if response contains unwanted patterns
text_lower = text.lower()
is_explanation = any(pattern.lower() in text_lower for pattern in unwanted_patterns)
# Also check if the response is suspiciously long for a bubble
# Most manga bubbles are short, if we get 50+ chars it might be an explanation
is_too_long = len(text) > 100 and ('.' in text or ',' in text or '!' in text)
if is_explanation or is_too_long:
self._log(f"⚠️ Model returned explanation instead of text, ignoring", "warning")
# Return empty result or just skip this region
return results
# Check language
has_korean = any('\uAC00' <= c <= '\uD7AF' for c in text)
has_japanese = any('\u3040' <= c <= '\u309F' or '\u30A0' <= c <= '\u30FF' for c in text)
has_chinese = any('\u4E00' <= c <= '\u9FFF' for c in text)
if has_korean:
self._log(f"✅ Korean detected: {text[:50]}...")
elif has_japanese:
self._log(f"✅ Japanese detected: {text[:50]}...")
elif has_chinese:
self._log(f"✅ Chinese detected: {text[:50]}...")
else:
self._log(f"✅ Text: {text[:50]}...")
results.append(OCRResult(
text=text,
bbox=(0, 0, w, h),
confidence=0.9,
vertices=[(0, 0), (w, 0), (w, h), (0, h)]
))
else:
self._log("⚠️ No text detected", "warning")
except Exception as e:
self._log(f"❌ Error: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
class EasyOCRProvider(OCRProvider):
"""EasyOCR provider for multiple languages"""
def __init__(self, log_callback=None, languages=None):
super().__init__(log_callback)
# Default to safe language combination
self.languages = languages or ['ja', 'en'] # Safe default
self._validate_language_combination()
def _validate_language_combination(self):
"""Validate and fix EasyOCR language combinations"""
# EasyOCR language compatibility rules
incompatible_pairs = [
(['ja', 'ko'], 'Japanese and Korean cannot be used together'),
(['ja', 'zh'], 'Japanese and Chinese cannot be used together'),
(['ko', 'zh'], 'Korean and Chinese cannot be used together')
]
for incompatible, reason in incompatible_pairs:
if all(lang in self.languages for lang in incompatible):
self._log(f"⚠️ EasyOCR: {reason}", "warning")
# Keep first language + English
self.languages = [self.languages[0], 'en']
self._log(f"🔧 Auto-adjusted to: {self.languages}", "info")
break
def check_installation(self) -> bool:
"""Check if easyocr is installed"""
try:
import easyocr
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install easyocr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load easyocr model"""
try:
if not self.is_installed and not self.check_installation():
self._log("❌ easyocr not installed", "error")
return False
self._log(f"🔥 Loading easyocr model for languages: {self.languages}...")
import easyocr
# This will download models on first run
self.model = easyocr.Reader(self.languages, gpu=True)
self.is_loaded = True
self._log("✅ easyocr model loaded successfully")
return True
except Exception as e:
self._log(f"❌ Failed to load easyocr: {str(e)}", "error")
# Try CPU mode if GPU fails
try:
import easyocr
self.model = easyocr.Reader(self.languages, gpu=False)
self.is_loaded = True
self._log("✅ easyocr loaded in CPU mode")
return True
except:
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using easyocr"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
# EasyOCR can work directly with numpy arrays
ocr_results = self.model.readtext(image, detail=1)
# Parse results
for (bbox, text, confidence) in ocr_results:
# bbox is a list of 4 points
xs = [point[0] for point in bbox]
ys = [point[1] for point in bbox]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
results.append(OCRResult(
text=text,
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox]
))
self._log(f"✅ Detected {len(results)} text regions")
except Exception as e:
self._log(f"❌ Error in easyocr detection: {str(e)}", "error")
return results
class PaddleOCRProvider(OCRProvider):
"""PaddleOCR provider with memory safety measures"""
def check_installation(self) -> bool:
"""Check if paddleocr is installed"""
try:
from paddleocr import PaddleOCR
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install paddleocr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load paddleocr model with memory-safe configurations"""
try:
if not self.is_installed and not self.check_installation():
self._log("❌ paddleocr not installed", "error")
return False
self._log("🔥 Loading PaddleOCR model...")
# Set memory-safe environment variables BEFORE importing
import os
os.environ['OMP_NUM_THREADS'] = '1' # Prevent OpenMP conflicts
os.environ['MKL_NUM_THREADS'] = '1' # Prevent MKL conflicts
os.environ['OPENBLAS_NUM_THREADS'] = '1' # Prevent OpenBLAS conflicts
os.environ['FLAGS_use_mkldnn'] = '0' # Disable MKL-DNN
from paddleocr import PaddleOCR
# Try memory-safe configurations
configs_to_try = [
# Config 1: Most memory-safe configuration
{
'use_angle_cls': False, # Disable angle to save memory
'lang': 'ch',
'rec_batch_num': 1, # Process one at a time
'max_text_length': 100, # Limit text length
'drop_score': 0.5, # Higher threshold to reduce detections
'cpu_threads': 1, # Single thread to avoid conflicts
},
# Config 2: Minimal memory footprint
{
'lang': 'ch',
'rec_batch_num': 1,
'cpu_threads': 1,
},
# Config 3: Absolute minimal
{
'lang': 'ch'
},
# Config 4: Empty config
{}
]
for i, config in enumerate(configs_to_try):
try:
self._log(f" Trying configuration {i+1}/{len(configs_to_try)}: {config}")
# Force garbage collection before loading
import gc
gc.collect()
self.model = PaddleOCR(**config)
self.is_loaded = True
self.current_config = config
self._log(f"✅ PaddleOCR loaded successfully with config: {config}")
return True
except Exception as e:
error_str = str(e)
self._log(f" Config {i+1} failed: {error_str}", "debug")
# Clean up on failure
if hasattr(self, 'model'):
del self.model
gc.collect()
continue
self._log(f"❌ PaddleOCR failed to load with any configuration", "error")
return False
except Exception as e:
self._log(f"❌ Failed to load paddleocr: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text with memory safety measures"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
import cv2
import numpy as np
import gc
# Memory safety: Ensure image isn't too large
h, w = image.shape[:2] if len(image.shape) >= 2 else (0, 0)
# Limit image size to prevent memory issues
MAX_DIMENSION = 1500
if h > MAX_DIMENSION or w > MAX_DIMENSION:
scale = min(MAX_DIMENSION/h, MAX_DIMENSION/w)
new_h, new_w = int(h*scale), int(w*scale)
self._log(f"⚠️ Resizing large image from {w}x{h} to {new_w}x{new_h} for memory safety", "warning")
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
scale_factor = 1/scale
else:
scale_factor = 1.0
# Ensure correct format
if len(image.shape) == 2: # Grayscale
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
elif len(image.shape) == 4: # Batch
image = image[0]
# Ensure uint8 type
if image.dtype != np.uint8:
if image.max() <= 1.0:
image = (image * 255).astype(np.uint8)
else:
image = image.astype(np.uint8)
# Make a copy to avoid memory corruption
image_copy = image.copy()
# Force garbage collection before OCR
gc.collect()
# Process with timeout protection
import signal
import threading
ocr_results = None
ocr_error = None
def run_ocr():
nonlocal ocr_results, ocr_error
try:
ocr_results = self.model.ocr(image_copy)
except Exception as e:
ocr_error = e
# Run OCR in a separate thread with timeout
ocr_thread = threading.Thread(target=run_ocr)
ocr_thread.daemon = True
ocr_thread.start()
ocr_thread.join(timeout=30) # 30 second timeout
if ocr_thread.is_alive():
self._log("❌ PaddleOCR timeout - taking too long", "error")
return results
if ocr_error:
raise ocr_error
# Parse results
results = self._parse_ocr_results(ocr_results)
# Scale coordinates back if image was resized
if scale_factor != 1.0 and results:
for r in results:
x, y, width, height = r.bbox
r.bbox = (int(x*scale_factor), int(y*scale_factor),
int(width*scale_factor), int(height*scale_factor))
r.vertices = [(int(v[0]*scale_factor), int(v[1]*scale_factor))
for v in r.vertices]
if results:
self._log(f"✅ Detected {len(results)} text regions", "info")
else:
self._log("No text regions found", "debug")
# Clean up
del image_copy
gc.collect()
except Exception as e:
error_msg = str(e) if str(e) else type(e).__name__
if "memory" in error_msg.lower() or "0x" in error_msg:
self._log("❌ Memory access violation in PaddleOCR", "error")
self._log(" This is a known Windows issue with PaddleOCR", "info")
self._log(" Please switch to EasyOCR or manga-ocr instead", "warning")
elif "trace_order.size()" in error_msg:
self._log("❌ PaddleOCR internal error", "error")
self._log(" Please switch to EasyOCR or manga-ocr", "warning")
else:
self._log(f"❌ Error in paddleocr detection: {error_msg}", "error")
import traceback
self._log(traceback.format_exc(), "debug")
return results
def _parse_ocr_results(self, ocr_results) -> List[OCRResult]:
"""Parse OCR results safely"""
results = []
if isinstance(ocr_results, bool) and ocr_results == False:
return results
if ocr_results is None or not isinstance(ocr_results, list):
return results
if len(ocr_results) == 0:
return results
# Handle batch format
if isinstance(ocr_results[0], list) and len(ocr_results[0]) > 0:
first_item = ocr_results[0][0]
if isinstance(first_item, list) and len(first_item) > 0:
if isinstance(first_item[0], (list, tuple)) and len(first_item[0]) == 2:
ocr_results = ocr_results[0]
# Parse detections
for detection in ocr_results:
if not detection or isinstance(detection, bool):
continue
if not isinstance(detection, (list, tuple)) or len(detection) < 2:
continue
try:
bbox_points = detection[0]
text_data = detection[1]
if not isinstance(bbox_points, (list, tuple)) or len(bbox_points) != 4:
continue
if not isinstance(text_data, (tuple, list)) or len(text_data) < 2:
continue
text = str(text_data[0]).strip()
confidence = float(text_data[1])
if not text or confidence < 0.3:
continue
xs = [float(p[0]) for p in bbox_points]
ys = [float(p[1]) for p in bbox_points]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
if (x_max - x_min) < 5 or (y_max - y_min) < 5:
continue
results.append(OCRResult(
text=text,
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
))
except Exception:
continue
return results
class DocTROCRProvider(OCRProvider):
"""DocTR OCR provider"""
def check_installation(self) -> bool:
"""Check if doctr is installed"""
try:
from doctr.models import ocr_predictor
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install doctr"""
pass
def load_model(self, **kwargs) -> bool:
"""Load doctr model"""
try:
if not self.is_installed and not self.check_installation():
self._log("❌ doctr not installed", "error")
return False
self._log("🔥 Loading DocTR model...")
from doctr.models import ocr_predictor
# Load pretrained model
self.model = ocr_predictor(pretrained=True)
self.is_loaded = True
self._log("✅ DocTR model loaded successfully")
return True
except Exception as e:
self._log(f"❌ Failed to load doctr: {str(e)}", "error")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using doctr"""
results = []
try:
if not self.is_loaded:
if not self.load_model():
return results
from doctr.io import DocumentFile
# DocTR expects document format
# Convert numpy array to PIL and save temporarily
import tempfile
import cv2
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
cv2.imwrite(tmp.name, image)
doc = DocumentFile.from_images(tmp.name)
# Run OCR
result = self.model(doc)
# Parse results
h, w = image.shape[:2]
for page in result.pages:
for block in page.blocks:
for line in block.lines:
for word in line.words:
# Handle different geometry formats
geometry = word.geometry
if len(geometry) == 4:
# Standard format: (x1, y1, x2, y2)
x1, y1, x2, y2 = geometry
elif len(geometry) == 2:
# Alternative format: ((x1, y1), (x2, y2))
(x1, y1), (x2, y2) = geometry
else:
self._log(f"Unexpected geometry format: {geometry}", "warning")
continue
# Convert relative coordinates to absolute
x1, x2 = int(x1 * w), int(x2 * w)
y1, y2 = int(y1 * h), int(y2 * h)
results.append(OCRResult(
text=word.value,
bbox=(x1, y1, x2 - x1, y2 - y1),
confidence=word.confidence,
vertices=[(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
))
# Clean up temp file
try:
os.unlink(tmp.name)
except:
pass
self._log(f"DocTR detected {len(results)} text regions")
except Exception as e:
self._log(f"Error in doctr detection: {str(e)}", "error")
import traceback
self._log(traceback.format_exc(), "error")
return results
class RapidOCRProvider(OCRProvider):
"""RapidOCR provider for fast local OCR"""
def check_installation(self) -> bool:
"""Check if rapidocr is installed"""
try:
import rapidocr_onnxruntime
self.is_installed = True
return True
except ImportError:
return False
def install(self, progress_callback=None) -> bool:
"""Install rapidocr (requires manual pip install)"""
# RapidOCR requires manual installation
if progress_callback:
progress_callback("RapidOCR requires manual pip installation")
self._log("Run: pip install rapidocr-onnxruntime", "info")
return False # Always return False since we can't auto-install
def load_model(self, **kwargs) -> bool:
"""Load RapidOCR model"""
try:
if not self.is_installed and not self.check_installation():
self._log("RapidOCR not installed", "error")
return False
self._log("Loading RapidOCR...")
from rapidocr_onnxruntime import RapidOCR
self.model = RapidOCR()
self.is_loaded = True
self._log("RapidOCR model loaded successfully")
return True
except Exception as e:
self._log(f"Failed to load RapidOCR: {str(e)}", "error")
return False
def detect_text(self, image: np.ndarray, **kwargs) -> List[OCRResult]:
"""Detect text using RapidOCR"""
if not self.is_loaded:
self._log("RapidOCR model not loaded", "error")
return []
results = []
try:
# Convert numpy array to PIL Image for RapidOCR
if len(image.shape) == 3:
# BGR to RGB
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
else:
image_rgb = image
# RapidOCR expects PIL Image or numpy array
ocr_results, _ = self.model(image_rgb)
if ocr_results:
for result in ocr_results:
# RapidOCR returns [bbox, text, confidence]
bbox_points = result[0] # 4 corner points
text = result[1]
confidence = float(result[2])
if not text or not text.strip():
continue
# Convert 4-point bbox to x,y,w,h format
xs = [point[0] for point in bbox_points]
ys = [point[1] for point in bbox_points]
x_min, x_max = min(xs), max(xs)
y_min, y_max = min(ys), max(ys)
results.append(OCRResult(
text=text.strip(),
bbox=(int(x_min), int(y_min), int(x_max - x_min), int(y_max - y_min)),
confidence=confidence,
vertices=[(int(p[0]), int(p[1])) for p in bbox_points]
))
self._log(f"Detected {len(results)} text regions")
except Exception as e:
self._log(f"Error in RapidOCR detection: {str(e)}", "error")
return results
class OCRManager:
"""Manager for multiple OCR providers"""
def __init__(self, log_callback=None):
self.log_callback = log_callback
self.providers = {
'custom-api': CustomAPIProvider(log_callback) ,
'manga-ocr': MangaOCRProvider(log_callback),
'easyocr': EasyOCRProvider(log_callback),
'paddleocr': PaddleOCRProvider(log_callback),
'doctr': DocTROCRProvider(log_callback),
'rapidocr': RapidOCRProvider(log_callback),
'Qwen2-VL': Qwen2VL(log_callback)
}
self.current_provider = None
self.stop_flag = None
def get_provider(self, name: str) -> Optional[OCRProvider]:
"""Get OCR provider by name"""
return self.providers.get(name)
def set_current_provider(self, name: str):
"""Set current active provider"""
if name in self.providers:
self.current_provider = name
return True
return False
def check_provider_status(self, name: str) -> Dict[str, bool]:
"""Check installation and loading status of provider"""
provider = self.providers.get(name)
if not provider:
return {'installed': False, 'loaded': False}
result = {
'installed': provider.check_installation(),
'loaded': provider.is_loaded
}
if self.log_callback:
self.log_callback(f"DEBUG: check_provider_status({name}) returning loaded={result['loaded']}", "debug")
return result
def install_provider(self, name: str, progress_callback=None) -> bool:
"""Install a provider"""
provider = self.providers.get(name)
if not provider:
return False
return provider.install(progress_callback)
def load_provider(self, name: str, **kwargs) -> bool:
"""Load a provider's model with optional parameters"""
provider = self.providers.get(name)
if not provider:
return False
return provider.load_model(**kwargs) # <-- Passes model_size and any other kwargs
def shutdown(self):
"""Release models/processors/tokenizers for all providers and clear caches."""
try:
import gc
for name, provider in list(self.providers.items()):
try:
if hasattr(provider, 'model'):
provider.model = None
if hasattr(provider, 'processor'):
provider.processor = None
if hasattr(provider, 'tokenizer'):
provider.tokenizer = None
if hasattr(provider, 'reader'):
provider.reader = None
if hasattr(provider, 'is_loaded'):
provider.is_loaded = False
except Exception:
pass
gc.collect()
try:
import torch
torch.cuda.empty_cache()
except Exception:
pass
except Exception:
pass
def detect_text(self, image: np.ndarray, provider_name: str = None, **kwargs) -> List[OCRResult]:
"""Detect text using specified or current provider"""
provider_name = provider_name or self.current_provider
if not provider_name:
return []
provider = self.providers.get(provider_name)
if not provider:
return []
return provider.detect_text(image, **kwargs)
def set_stop_flag(self, stop_flag):
"""Set stop flag for all providers"""
self.stop_flag = stop_flag
for provider in self.providers.values():
if hasattr(provider, 'set_stop_flag'):
provider.set_stop_flag(stop_flag)
def reset_stop_flags(self):
"""Reset stop flags for all providers"""
for provider in self.providers.values():
if hasattr(provider, 'reset_stop_flags'):
provider.reset_stop_flags()