File size: 9,677 Bytes
086e346
 
 
 
 
3d50de0
1a07c5d
d44e05d
 
086e346
bd0cfb9
 
 
086e346
 
 
 
 
 
 
 
 
3d50de0
086e346
 
2643bec
086e346
 
 
1a07c5d
086e346
 
 
 
 
 
 
1a07c5d
086e346
 
 
 
 
 
 
eb29213
 
 
 
 
 
 
 
 
 
 
 
 
1a07c5d
eb29213
 
1a07c5d
eb29213
ebec941
eb29213
 
 
 
 
 
 
 
ebec941
eb29213
 
 
 
 
 
 
 
d44e05d
eb29213
 
 
 
 
 
 
 
15cf5b6
 
eb29213
d44e05d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb29213
 
 
 
086e346
d44e05d
 
086e346
 
 
1a07c5d
086e346
 
 
 
 
 
 
 
 
 
 
 
1a07c5d
086e346
 
 
 
1a07c5d
086e346
 
1a07c5d
086e346
 
 
 
ebec941
086e346
 
1a07c5d
ebec941
1a07c5d
 
ebec941
086e346
 
ebec941
1a07c5d
ebec941
 
 
 
 
1a07c5d
086e346
 
1a07c5d
086e346
 
ebec941
086e346
ebec941
1a07c5d
 
086e346
1a07c5d
 
086e346
 
 
 
 
1a07c5d
086e346
 
 
ebec941
 
086e346
 
ebec941
086e346
1a07c5d
ebec941
086e346
 
1a07c5d
ebec941
 
 
 
 
 
1a07c5d
 
086e346
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import os
import spaces
import tempfile
import json
from pathlib import Path

# Set CUDA device
os.environ["CUDA_VISIBLE_DEVICES"] = '0'

# Load model and tokenizer
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
    model_name,
    _attn_implementation="flash_attention_2",
    trust_remote_code=True,
    use_safetensors=True,
)
model = model.eval()


@spaces.GPU(duration=120)
def ocr_process(
    image_input: Image.Image,
    task_type: str = "ocr",
    preset: str = "gundam",
) -> str:
    """
    Process image and extract text using DeepSeek-OCR model.

    Args:
        image_input: Input image
        task_type: Type of task - "ocr" for text extraction or "markdown" for document conversion
        preset: Preset configuration for model parameters

    Returns:
        Extracted text or markdown content
    """
    if image_input is None:
        return "Please upload an image first."

    # Move model to GPU and set dtype
    model.cuda().to(torch.bfloat16)
    
    # Create temp directory for this session
    with tempfile.TemporaryDirectory() as temp_dir:
        # Save image with proper format
        temp_image_path = os.path.join(temp_dir, "input_image.jpg")
        # Convert RGBA to RGB if necessary
        if image_input.mode in ('RGBA', 'LA', 'P'):
            rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
            # Handle different image modes
            if image_input.mode == 'RGBA':
                rgb_image.paste(image_input, mask=image_input.split()[3])
            else:
                rgb_image.paste(image_input)
            rgb_image.save(temp_image_path, 'JPEG', quality=95)
        else:
            image_input.save(temp_image_path, 'JPEG', quality=95)
        
        # Set parameters based on preset
        presets = {
            "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
            "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
            "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
            "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
            "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
        }
        
        config = presets[preset]

        # Set prompt based on task type
        if task_type == "markdown":
            prompt = "<image>\n<|grounding|>Convert the document to markdown. "
        else:
            prompt = "<image>\nFree OCR. "

        # Run inference with save_results=True to save output
        result = model.infer(
            tokenizer,
            prompt=prompt,
            image_file=temp_image_path,
            output_path=temp_dir,
            base_size=config["base_size"],
            image_size=config["image_size"],
            crop_mode=config["crop_mode"],
            save_results=True,
            test_compress=True,
        )
        
        # Try to read the saved results
        extracted_text = ""
        
        # Check for saved JSON results
        json_path = Path(temp_dir) / "input_image_outputs.json"
        if json_path.exists():
            try:
                with open(json_path, 'r', encoding='utf-8') as f:
                    data = json.load(f)
                    # Extract text from the JSON structure
                    if isinstance(data, dict):
                        if 'text' in data:
                            extracted_text = data['text']
                        elif 'output' in data:
                            extracted_text = data['output']
                        elif 'result' in data:
                            extracted_text = data['result']
                        else:
                            # If the structure is different, try to get the first string value
                            for key, value in data.items():
                                if isinstance(value, str) and len(value) > 10:
                                    extracted_text = value
                                    break
                    elif isinstance(data, list) and len(data) > 0:
                        extracted_text = str(data[0])
                    else:
                        extracted_text = str(data)
            except Exception as e:
                print(f"Error reading JSON: {e}")
        
        # If no JSON, check for text file
        if not extracted_text:
            txt_path = Path(temp_dir) / "input_image_outputs.txt"
            if txt_path.exists():
                try:
                    with open(txt_path, 'r', encoding='utf-8') as f:
                        extracted_text = f.read()
                except Exception as e:
                    print(f"Error reading text file: {e}")
        
        # If still no text, check for any output files
        if not extracted_text:
            output_files = list(Path(temp_dir).glob("*output*"))
            for file_path in output_files:
                if file_path.suffix in ['.txt', '.json', '.md']:
                    try:
                        with open(file_path, 'r', encoding='utf-8') as f:
                            content = f.read()
                            if content.strip():
                                extracted_text = content
                                break
                    except Exception as e:
                        print(f"Error reading {file_path}: {e}")
        
        # If we still don't have text but result is not None, use result directly
        if not extracted_text and result is not None:
            if isinstance(result, str):
                extracted_text = result
            elif isinstance(result, (list, tuple)) and len(result) > 0:
                extracted_text = str(result[0])
            else:
                extracted_text = str(result)

    # Move model back to CPU to free GPU memory
    model.to("cpu")
    torch.cuda.empty_cache()

    # Return the extracted text
    return extracted_text if extracted_text else "No text could be extracted from the image. Please try a different preset or check if the image contains readable text."


# Create Gradio interface
with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>πŸ” DeepSeek OCR</h1>
            <p>Extract text and convert documents to markdown using DeepSeek-OCR</p>
            <p>Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #0066cc; text-decoration: none;">anycoder</a></p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“€ Upload Image")
            image_input = gr.Image(
                label="Input Image",
                type="pil",
                sources=["upload", "webcam", "clipboard"],
                height=300,
            )

            gr.Markdown("### βš™οΈ Settings")
            task_type = gr.Radio(
                choices=["ocr", "markdown"],
                value="ocr",
                label="Task Type",
                info="OCR: Extract plain text | Markdown: Convert to formatted markdown",
            )

            preset = gr.Radio(
                choices=["gundam", "base", "large", "small", "tiny"],
                value="gundam",
                label="Model Preset",
                info="Start with 'gundam' - it's optimized for most documents",
            )

            with gr.Accordion("ℹ️ Preset Details", open=False):
                gr.Markdown("""
                - **Gundam** (Recommended): Balanced performance with crop mode
                - **Base**: Standard quality without cropping
                - **Large**: Highest quality for complex documents
                - **Small**: Faster processing, good for simple text
                - **Tiny**: Fastest, suitable for clear printed text
                """)

            submit_btn = gr.Button("πŸš€ Extract Text", variant="primary", size="lg")
            clear_btn = gr.ClearButton([image_input], value="πŸ—‘οΈ Clear")

        with gr.Column(scale=1):
            gr.Markdown("### πŸ“ Extracted Text")
            output_text = gr.Textbox(
                label="Output",
                lines=15,
                max_lines=30,
                interactive=False,
                placeholder="Extracted text will appear here...",
                show_copy_button=True,
            )

    # Event handlers
    submit_btn.click(
        fn=ocr_process,
        inputs=[image_input, task_type, preset],
        outputs=output_text,
    )

    # Example section with receipt image
    gr.Markdown("### πŸ“š Example")
    gr.Examples(
        examples=[
            ["https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/800px-ReceiptSwiss.jpg", "ocr", "gundam"],
        ],
        inputs=[image_input, task_type, preset],
        label="Try this receipt example",
    )

    gr.Markdown("""
    ### πŸ’‘ Tips for Best Results
    - **For receipts**: Use "ocr" mode with "gundam" or "base" preset
    - **For documents with tables**: Use "markdown" mode with "large" preset
    - **If text is not detected**: Try different presets in this order: gundam β†’ base β†’ large
    - **For handwritten text**: Use "large" preset for better accuracy
    - Ensure images are clear and well-lit for optimal results
    """)


if __name__ == "__main__":
    demo.launch(share=False)