Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,616 Bytes
086e346 3d50de0 1a07c5d 086e346 bd0cfb9 086e346 3d50de0 086e346 2643bec 086e346 1a07c5d 086e346 1a07c5d 086e346 eb29213 1a07c5d eb29213 1a07c5d eb29213 ebec941 eb29213 ebec941 eb29213 086e346 eb29213 086e346 1a07c5d 086e346 1a07c5d 086e346 1a07c5d 086e346 1a07c5d 086e346 ebec941 086e346 1a07c5d ebec941 1a07c5d ebec941 086e346 ebec941 1a07c5d ebec941 1a07c5d 086e346 1a07c5d 086e346 ebec941 086e346 ebec941 1a07c5d 086e346 1a07c5d 086e346 1a07c5d 086e346 ebec941 086e346 ebec941 086e346 1a07c5d ebec941 086e346 1a07c5d ebec941 1a07c5d 086e346 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import os
import spaces
import tempfile
# Set CUDA device
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
# Load model and tokenizer
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
model_name,
_attn_implementation="flash_attention_2",
trust_remote_code=True,
use_safetensors=True,
)
model = model.eval()
@spaces.GPU(duration=120)
def ocr_process(
image_input: Image.Image,
task_type: str = "ocr",
preset: str = "gundam",
) -> str:
"""
Process image and extract text using DeepSeek-OCR model.
Args:
image_input: Input image
task_type: Type of task - "ocr" for text extraction or "markdown" for document conversion
preset: Preset configuration for model parameters
Returns:
Extracted text or markdown content
"""
if image_input is None:
return "Please upload an image first."
# Move model to GPU and set dtype
model.cuda().to(torch.bfloat16)
# Create temp directory for this session
with tempfile.TemporaryDirectory() as temp_dir:
# Save image with proper format
temp_image_path = os.path.join(temp_dir, "input_image.jpg")
# Convert RGBA to RGB if necessary
if image_input.mode in ('RGBA', 'LA', 'P'):
rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
# Handle different image modes
if image_input.mode == 'RGBA':
rgb_image.paste(image_input, mask=image_input.split()[3])
else:
rgb_image.paste(image_input)
rgb_image.save(temp_image_path, 'JPEG', quality=95)
else:
image_input.save(temp_image_path, 'JPEG', quality=95)
# Set parameters based on preset
presets = {
"tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
"small": {"base_size": 640, "image_size": 640, "crop_mode": False},
"base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
"large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
"gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
}
config = presets[preset]
# Set prompt based on task type
if task_type == "markdown":
prompt = "<image>\n<|grounding|>Convert the document to markdown. "
else:
prompt = "<image>\nFree OCR. "
# Run inference - return the result directly
result = model.infer(
tokenizer,
prompt=prompt,
image_file=temp_image_path,
output_path=temp_dir,
base_size=config["base_size"],
image_size=config["image_size"],
crop_mode=config["crop_mode"],
save_results=False,
test_compress=False,
)
# Move model back to CPU to free GPU memory
model.to("cpu")
torch.cuda.empty_cache()
# Return the result directly - the model returns the extracted text
return result
# Create Gradio interface
with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo:
gr.HTML(
"""
<div style="text-align: center; margin-bottom: 20px;">
<h1>π DeepSeek OCR</h1>
<p>Extract text and convert documents to markdown using DeepSeek-OCR</p>
<p>Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #0066cc; text-decoration: none;">anycoder</a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π€ Upload Image")
image_input = gr.Image(
label="Input Image",
type="pil",
sources=["upload", "webcam", "clipboard"],
height=300,
)
gr.Markdown("### βοΈ Settings")
task_type = gr.Radio(
choices=["ocr", "markdown"],
value="ocr",
label="Task Type",
info="OCR: Extract plain text | Markdown: Convert to formatted markdown",
)
preset = gr.Radio(
choices=["gundam", "base", "large", "small", "tiny"],
value="gundam",
label="Model Preset",
info="Start with 'gundam' - it's optimized for most documents",
)
with gr.Accordion("βΉοΈ Preset Details", open=False):
gr.Markdown("""
- **Gundam** (Recommended): Balanced performance with crop mode
- **Base**: Standard quality without cropping
- **Large**: Highest quality for complex documents
- **Small**: Faster processing, good for simple text
- **Tiny**: Fastest, suitable for clear printed text
""")
submit_btn = gr.Button("π Extract Text", variant="primary", size="lg")
clear_btn = gr.ClearButton([image_input], value="ποΈ Clear")
with gr.Column(scale=1):
gr.Markdown("### π Extracted Text")
output_text = gr.Textbox(
label="Output",
lines=15,
max_lines=30,
interactive=False,
placeholder="Extracted text will appear here...",
show_copy_button=True,
)
# Event handlers
submit_btn.click(
fn=ocr_process,
inputs=[image_input, task_type, preset],
outputs=output_text,
)
# Example section with receipt image
gr.Markdown("### π Example")
gr.Examples(
examples=[
["https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/800px-ReceiptSwiss.jpg", "ocr", "gundam"],
],
inputs=[image_input, task_type, preset],
label="Try this receipt example",
)
gr.Markdown("""
### π‘ Tips for Best Results
- **For receipts**: Use "ocr" mode with "gundam" or "base" preset
- **For documents with tables**: Use "markdown" mode with "large" preset
- **If text is not detected**: Try different presets in this order: gundam β base β large
- **For handwritten text**: Use "large" preset for better accuracy
- Ensure images are clear and well-lit for optimal results
""")
if __name__ == "__main__":
demo.launch(share=False) |