File size: 6,616 Bytes
086e346
 
 
 
 
3d50de0
1a07c5d
086e346
bd0cfb9
 
 
086e346
 
 
 
 
 
 
 
 
3d50de0
086e346
 
2643bec
086e346
 
 
1a07c5d
086e346
 
 
 
 
 
 
1a07c5d
086e346
 
 
 
 
 
 
eb29213
 
 
 
 
 
 
 
 
 
 
 
 
1a07c5d
eb29213
 
1a07c5d
eb29213
ebec941
eb29213
 
 
 
 
 
 
 
ebec941
eb29213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086e346
eb29213
 
086e346
 
 
1a07c5d
086e346
 
 
 
 
 
 
 
 
 
 
 
1a07c5d
086e346
 
 
 
1a07c5d
086e346
 
1a07c5d
086e346
 
 
 
ebec941
086e346
 
1a07c5d
ebec941
1a07c5d
 
ebec941
086e346
 
ebec941
1a07c5d
ebec941
 
 
 
 
1a07c5d
086e346
 
1a07c5d
086e346
 
ebec941
086e346
ebec941
1a07c5d
 
086e346
1a07c5d
 
086e346
 
 
 
 
1a07c5d
086e346
 
 
ebec941
 
086e346
 
ebec941
086e346
1a07c5d
ebec941
086e346
 
1a07c5d
ebec941
 
 
 
 
 
1a07c5d
 
086e346
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
from PIL import Image
import os
import spaces
import tempfile

# Set CUDA device
os.environ["CUDA_VISIBLE_DEVICES"] = '0'

# Load model and tokenizer
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
    model_name,
    _attn_implementation="flash_attention_2",
    trust_remote_code=True,
    use_safetensors=True,
)
model = model.eval()


@spaces.GPU(duration=120)
def ocr_process(
    image_input: Image.Image,
    task_type: str = "ocr",
    preset: str = "gundam",
) -> str:
    """
    Process image and extract text using DeepSeek-OCR model.

    Args:
        image_input: Input image
        task_type: Type of task - "ocr" for text extraction or "markdown" for document conversion
        preset: Preset configuration for model parameters

    Returns:
        Extracted text or markdown content
    """
    if image_input is None:
        return "Please upload an image first."

    # Move model to GPU and set dtype
    model.cuda().to(torch.bfloat16)
    
    # Create temp directory for this session
    with tempfile.TemporaryDirectory() as temp_dir:
        # Save image with proper format
        temp_image_path = os.path.join(temp_dir, "input_image.jpg")
        # Convert RGBA to RGB if necessary
        if image_input.mode in ('RGBA', 'LA', 'P'):
            rgb_image = Image.new('RGB', image_input.size, (255, 255, 255))
            # Handle different image modes
            if image_input.mode == 'RGBA':
                rgb_image.paste(image_input, mask=image_input.split()[3])
            else:
                rgb_image.paste(image_input)
            rgb_image.save(temp_image_path, 'JPEG', quality=95)
        else:
            image_input.save(temp_image_path, 'JPEG', quality=95)
        
        # Set parameters based on preset
        presets = {
            "tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
            "small": {"base_size": 640, "image_size": 640, "crop_mode": False},
            "base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
            "large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
            "gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
        }
        
        config = presets[preset]

        # Set prompt based on task type
        if task_type == "markdown":
            prompt = "<image>\n<|grounding|>Convert the document to markdown. "
        else:
            prompt = "<image>\nFree OCR. "

        # Run inference - return the result directly
        result = model.infer(
            tokenizer,
            prompt=prompt,
            image_file=temp_image_path,
            output_path=temp_dir,
            base_size=config["base_size"],
            image_size=config["image_size"],
            crop_mode=config["crop_mode"],
            save_results=False,
            test_compress=False,
        )

    # Move model back to CPU to free GPU memory
    model.to("cpu")
    torch.cuda.empty_cache()

    # Return the result directly - the model returns the extracted text
    return result


# Create Gradio interface
with gr.Blocks(title="DeepSeek OCR", theme=gr.themes.Soft()) as demo:
    gr.HTML(
        """
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>πŸ” DeepSeek OCR</h1>
            <p>Extract text and convert documents to markdown using DeepSeek-OCR</p>
            <p>Built with <a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #0066cc; text-decoration: none;">anycoder</a></p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### πŸ“€ Upload Image")
            image_input = gr.Image(
                label="Input Image",
                type="pil",
                sources=["upload", "webcam", "clipboard"],
                height=300,
            )

            gr.Markdown("### βš™οΈ Settings")
            task_type = gr.Radio(
                choices=["ocr", "markdown"],
                value="ocr",
                label="Task Type",
                info="OCR: Extract plain text | Markdown: Convert to formatted markdown",
            )

            preset = gr.Radio(
                choices=["gundam", "base", "large", "small", "tiny"],
                value="gundam",
                label="Model Preset",
                info="Start with 'gundam' - it's optimized for most documents",
            )

            with gr.Accordion("ℹ️ Preset Details", open=False):
                gr.Markdown("""
                - **Gundam** (Recommended): Balanced performance with crop mode
                - **Base**: Standard quality without cropping
                - **Large**: Highest quality for complex documents
                - **Small**: Faster processing, good for simple text
                - **Tiny**: Fastest, suitable for clear printed text
                """)

            submit_btn = gr.Button("πŸš€ Extract Text", variant="primary", size="lg")
            clear_btn = gr.ClearButton([image_input], value="πŸ—‘οΈ Clear")

        with gr.Column(scale=1):
            gr.Markdown("### πŸ“ Extracted Text")
            output_text = gr.Textbox(
                label="Output",
                lines=15,
                max_lines=30,
                interactive=False,
                placeholder="Extracted text will appear here...",
                show_copy_button=True,
            )

    # Event handlers
    submit_btn.click(
        fn=ocr_process,
        inputs=[image_input, task_type, preset],
        outputs=output_text,
    )

    # Example section with receipt image
    gr.Markdown("### πŸ“š Example")
    gr.Examples(
        examples=[
            ["https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/ReceiptSwiss.jpg/800px-ReceiptSwiss.jpg", "ocr", "gundam"],
        ],
        inputs=[image_input, task_type, preset],
        label="Try this receipt example",
    )

    gr.Markdown("""
    ### πŸ’‘ Tips for Best Results
    - **For receipts**: Use "ocr" mode with "gundam" or "base" preset
    - **For documents with tables**: Use "markdown" mode with "large" preset
    - **If text is not detected**: Try different presets in this order: gundam β†’ base β†’ large
    - **For handwritten text**: Use "large" preset for better accuracy
    - Ensure images are clear and well-lit for optimal results
    """)


if __name__ == "__main__":
    demo.launch(share=False)