Isaac-0.1 / app.py
akhaliq's picture
akhaliq HF Staff
Upload app.py with huggingface_hub
7231c7d verified
raw
history blame
7.16 kB
import os
import sys
import torch
from PIL import Image as PILImage
from PIL import ImageDraw, ImageFont
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor
from loguru import logger
import gradio as gr
import spaces
# Prefer local repo package over any site-installed "perceptron" (adjust if needed)
REPO_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
if REPO_ROOT not in sys.path:
sys.path.insert(0, REPO_ROOT)
from perceptron.tensorstream import VisionType
from perceptron.tensorstream.ops import tensor_stream_token_view, modality_mask
from perceptron.pointing.parser import extract_points
# Global model and processor
model = None
processor = None
device = None
dtype = None
config = None
def load_model():
global model, processor, device, dtype, config
hf_path = "PerceptronAI/Isaac-0.1"
logger.info(f"Loading processor and config from HF checkpoint: {hf_path}")
config = AutoConfig.from_pretrained(hf_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(hf_path, trust_remote_code=True, use_fast=False)
processor = AutoProcessor.from_pretrained(hf_path, trust_remote_code=True)
processor.tokenizer = tokenizer # Ensure tokenizer is set
logger.info(f"Loading AutoModelForCausalLM from HF checkpoint: {hf_path}")
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
model = model.to(device=device, dtype=dtype)
model.eval()
logger.info(f"Model loaded on {device} with dtype {dtype}")
@spaces.GPU(duration=120)
def init():
if model is None:
load_model()
return "Model loaded successfully"
def document_to_messages(document, vision_token="<image>"):
messages = []
images = []
for item in document:
itype = item.get("type")
if itype == "text":
content = item.get("content")
if content:
messages.append({"role": item.get("role", "user"), "content": content})
elif itype == "image":
if "content" in item and item["content"] is not None:
img = PILImage.open(item["content"]).convert("RGB")
images.append(img)
messages.append({"role": item.get("role", "user"), "content": vision_token})
return messages, images
def decode_tensor_stream(tensor_stream, tokenizer):
token_view = tensor_stream_token_view(tensor_stream)
mod = modality_mask(tensor_stream)
text_tokens = token_view[(mod != VisionType.image.value)]
decoded = tokenizer.decode(text_tokens[0] if len(text_tokens.shape) > 1 else text_tokens)
return decoded
def visualize_predictions(generated_text, image, output_path="prediction.jpeg"):
boxes = extract_points(generated_text, expected="box")
if not boxes:
logger.info("No bounding boxes found in the generated text")
image.save(output_path)
return output_path
img_width, img_height = image.size
img_with_boxes = image.copy()
draw = ImageDraw.Draw(img_with_boxes)
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 16)
except:
font = ImageFont.load_default()
colors = ["red", "green", "blue", "yellow", "magenta", "cyan", "orange", "purple"]
for idx, box in enumerate(boxes):
color = colors[idx % len(colors)]
norm_x1, norm_y1 = box.top_left.x, box.top_left.y
norm_x2, norm_y2 = box.bottom_right.x, box.bottom_right.y
x1 = int((norm_x1 / 1000.0) * img_width)
y1 = int((norm_y1 / 1000.0) * img_height)
x2 = int((norm_x2 / 1000.0) * img_width)
y2 = int((norm_y2 / 1000.0) * img_height)
x1 = max(0, min(x1, img_width - 1))
y1 = max(0, min(y1, img_height - 1))
x2 = max(0, min(x2, img_width - 1))
y2 = max(0, min(y2, img_height - 1))
draw.rectangle([x1, y1, x2, y2], outline=color, width=3)
if box.mention:
text_y = max(y1 - 20, 5)
text_bbox = draw.textbbox((x1, text_y), box.mention, font=font)
draw.rectangle(text_bbox, fill=color)
draw.text((x1, text_y), box.mention, fill="white", font=font)
img_with_boxes.save(output_path, "JPEG")
return output_path
@spaces.GPU(duration=120)
def generate_response(image, prompt):
if model is None:
return "Model not loaded. Click 'Load Model' first.", None
document = [
{"type": "text", "content": "<hint>BOX</hint>", "role": "user"},
{"type": "image", "content": image, "role": "user"},
{"type": "text", "content": prompt, "role": "user"},
]
messages, images = document_to_messages(document, vision_token=config.vision_token)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, images=images, return_tensors="pt")
tensor_stream = inputs["tensor_stream"].to(device)
input_ids = inputs["input_ids"].to(device)
decoded_content = decode_tensor_stream(tensor_stream, processor.tokenizer)
with torch.no_grad():
generated_ids = model.generate(
tensor_stream=tensor_stream,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.eos_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
)
generated_text = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=False)
if images:
vis_path = visualize_predictions(generated_text, images[0])
return generated_text, vis_path
else:
return generated_text, None
with gr.Blocks(title="HuggingFace Perceptron Demo") as demo:
gr.Markdown("# HuggingFace Perceptron Pipeline Demo")
gr.Markdown("Built with [anycoder](https://huggingface.co/spaces/akhaliq/anycoder)")
gr.Markdown("""
This demo shows how to use the Perceptron Isaac model for multimodal generation with text and images.
Upload an image and provide a prompt to generate responses with bounding box visualizations.
""")
with gr.Row():
load_btn = gr.Button("Load Model", variant="primary")
image_input = gr.Image(type="filepath", label="Upload Image", sources=["upload", "webcam"])
prompt_input = gr.Textbox(
label="Prompt",
value="Determine whether it is safe to cross the street. Look for signage and moving traffic.",
lines=3,
placeholder="Enter your prompt here..."
)
with gr.Row():
generate_btn = gr.Button("Generate Response", variant="primary")
generated_text = gr.Textbox(label="Generated Text", lines=10)
visualized_image = gr.Image(label="Visualized Predictions (with Bounding Boxes)")
load_btn.click(init, outputs=gr.Textbox(value="Loading...", visible=False))
generate_btn.click(generate_response, inputs=[image_input, prompt_input], outputs=[generated_text, visualized_image])
if __name__ == "__main__":
demo.launch()