File size: 10,956 Bytes
355f5f7
 
 
 
3d115e7
 
355f5f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d115e7
 
 
 
 
355f5f7
f296c60
e038f18
 
2ea51de
9fe4b36
bfc2469
 
 
 
71fa3f5
3d115e7
48b6006
 
f296c60
3d115e7
f296c60
bfc2469
 
 
 
ff7999d
d92f6a2
 
f296c60
10c17b0
3d115e7
e038f18
3d115e7
 
 
 
 
 
bfc2469
 
 
3b7c098
5ad52f6
48b6006
5ad52f6
022c0a9
 
 
 
 
5ad52f6
022c0a9
 
 
 
 
48b6006
022c0a9
 
 
5ad52f6
 
7b650cf
5ad52f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ad34a
 
 
 
 
5ad52f6
48b6006
 
7b650cf
48b6006
 
 
5ad52f6
ecee2c9
48b6006
3d115e7
d92f6a2
 
3d115e7
 
 
 
 
 
 
 
 
 
d92f6a2
 
 
 
 
 
f296c60
 
 
 
 
 
 
bfc2469
1f32a04
f296c60
 
3d115e7
f296c60
 
bfc2469
423136d
f296c60
bfc2469
 
 
 
 
 
 
 
 
f296c60
bfc2469
 
f296c60
 
bfc2469
f296c60
 
 
 
 
 
 
 
 
d92f6a2
 
bfc2469
 
 
 
 
 
 
 
f296c60
bfc2469
3d115e7
bfc2469
f296c60
bfc2469
f296c60
bfc2469
f296c60
 
 
 
 
 
bfc2469
f296c60
 
bfc2469
 
 
 
 
 
f296c60
 
bfc2469
 
f296c60
 
 
 
 
bfc2469
 
 
 
f296c60
 
bfc2469
 
 
3d115e7
f296c60
d92f6a2
 
 
 
3d115e7
 
bfc2469
 
 
f296c60
bfc2469
 
 
 
f296c60
bfc2469
f296c60
bfc2469
 
 
24cd6d0
bfc2469
 
 
f296c60
bfc2469
 
 
 
 
 
3d115e7
bfc2469
 
 
f296c60
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

import os, sys, importlib

# Disable Spaces ZeroGPU by env and by calling its disable/unpatch if preloaded
os.environ["SPACES_ZERO_DISABLED"] = "1"

def _hard_disable_spaces_zero():
    # Hit common modules and try disable/unpatch/deactivate if present
    candidates = [
        "spaces.zero", "spaces.zero.torch.patching", "spaces.zero.torch",
        "spaces.zero.patch", "spaces.zero.patching"
    ]
    for modname in candidates:
        try:
            m = sys.modules.get(modname) or importlib.import_module(modname)
        except Exception:
            continue
        for attr in ("disable", "unpatch", "deactivate"):
            fn = getattr(m, attr, None)
            if callable(fn):
                try:
                    fn()
                except Exception:
                    pass

_hard_disable_spaces_zero()

# Force Transformers to use eager attention globally (affects all future loads)
os.environ["TRANSFORMERS_ATTENTION_IMPLEMENTATION"] = "eager"

# Prefer simple math SDP kernels (avoid vmap-heavy paths)
try:
    import torch
    torch.backends.cuda.sdp_kernel(enable_math=True, enable_flash=False, enable_mem_efficient=False)
except Exception:
    pass
# -------------------------------------------------------------------------------
import sys
from huggingface_hub import hf_hub_download
import pickle
from huggingface_hub import login
login(os.getenv("HF_Token"))
import json
import gradio as gr
from huggingface_hub import InferenceClient
from smolagents import CodeAgent, InferenceClientModel, tool
from langchain_community.embeddings import HuggingFaceEmbeddings
# from llama_index.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.core import StorageContext, load_index_from_storage
from huggingface_hub import login, snapshot_download
from smolagents import tool
# from all_datasets import *
from level_classifier_tool_2 import (
    classify_levels_phrases,
    HFEmbeddingBackend,
    build_phrase_index
)
from task_temp import rag_temp, rag_cls_temp, cls_temp, gen_temp
from all_tools import classify_and_score, QuestionRetrieverTool, set_classifier_state, set_retrieval_index

from phrases import BLOOMS_PHRASES, DOK_PHRASES
from pathlib import Path
# ------------------------ Prebuild embeddings once ------------------------
_backend = HFEmbeddingBackend(model_name="google/embeddinggemma-300m")
# Belt-and-suspenders: ensure eager attention even if class wasn't patched
try:
    _backend.MODEL.config.attn_implementation = "eager"
except Exception:
    pass

_BLOOM_INDEX = build_phrase_index(_backend, BLOOMS_PHRASES)
_DOK_INDEX = build_phrase_index(_backend, DOK_PHRASES)

DATASET_REPO = "bhardwaj08sarthak/rag-index"   # your dataset repo id
PERSIST_SUBDIR = "index_store"                      # folder inside the dataset

# Writable cache base (home or /tmp)
def _pick_writable_base() -> Path:
    for base in (Path.home(), Path("/tmp")):
        try:
            base.mkdir(parents=True, exist_ok=True)
            test = base / ".write_test"
            test.write_text("ok")
            test.unlink(missing_ok=True)
            return base
        except Exception:
            continue
    return Path.cwd()

WRITABLE_BASE = _pick_writable_base()
LOCAL_BASE = WRITABLE_BASE / "my_app_cache" / "index"
LOCAL_BASE.mkdir(parents=True, exist_ok=True)

# Download only the persisted index folder

snapshot_download(
    repo_id=DATASET_REPO,
    repo_type="dataset",
    local_dir=str(LOCAL_BASE),
    local_dir_use_symlinks=False,
)

# Resolve the actual persist dir by finding docstore.json
def _resolve_persist_dir(base: Path, subdir: str) -> Path:
    # Common candidates
    candidates = [
        base / subdir,       # <LOCAL_BASE>/index_store
        base,                # sometimes files land directly under local base
    ]
    for c in candidates:
        if (c / "docstore.json").exists():
            return c
    # Search anywhere under base for docstore.json
    matches = list(base.rglob("docstore.json"))
    if matches:
        return matches[0].parent
    # Nothing found: print what we actually downloaded
    tree = "\n".join(str(p.relative_to(base)) for p in base.rglob("*") if p.is_file())
    raise FileNotFoundError(
        f"Could not find 'docstore.json' under {base}. "
        f"Expected '{subdir}/docstore.json'. Downloaded files:\n{tree}"
    )

persist_dir = _resolve_persist_dir(Path(LOCAL_BASE), PERSIST_SUBDIR)

# Sanity-check typical LlamaIndex files (names may vary by version/vector store)
expected = ["docstore.json", "index_store.json", "vector_store.json"]
missing = [name for name in expected if not (persist_dir / name).exists()]
if missing:
    # Not fatal for every setup, but warn loudly so you know if upload was incomplete
    print(f"[warn] Missing in {persist_dir}: {missing}. If loading fails, re-upload the full '{PERSIST_SUBDIR}' folder.")

# Pick a device that exists for embeddings
try:
    import torch
    _emb_device = "cuda" if torch.cuda.is_available() else "cpu"
except Exception:
    _emb_device = "cpu"

emb = HuggingFaceEmbeddings(
    model_name="google/embeddinggemma-300m",
    model_kwargs={"device": _emb_device}, #"attn_implementation": "eager"},
    encode_kwargs={"normalize_embeddings": True},
)

# Finally load the index
storage_context = StorageContext.from_defaults(persist_dir=str(persist_dir))
index = load_index_from_storage(storage_context, embed_model=emb)

set_classifier_state(_backend, _BLOOM_INDEX, _DOK_INDEX)
set_retrieval_index(index)
# Datasets & GPU build code remains commented out...
# @spaces.GPU(15)
# def build_indexes_on_gpu(model="google/embeddinggemma-300m"):
#     device = 'cuda'
#     emb = HuggingFaceEmbeddings(
#         model_name="model",
#         model_kwargs={"device": device, "attn_implementation": "eager"},
#         encode_kwargs={"normalize_embeddings": True})
#     idx = VectorStoreIndex.from_documents([Document(text=t) for t in texts], embed_model=emb)
#     return idx
TASK_TEMPLATES = {
    "rag_temp": rag_temp,
    "rag_cls_temp": rag_cls_temp,
    "cls_temp": cls_temp,
    "gen_temp": gen_temp,
}
# ------------------------ Agent setup with timeout ------------------------
def make_agent(hf_token: str, model_id: str, provider: str, timeout: int, temperature: float, max_tokens: int):
    client = InferenceClient(
        model=model_id,
        provider=provider,
        timeout=timeout,
        token=hf_token if hf_token else None,
    )

    # Bind generation params by partially applying via model kwargs.
    # smolagents InferenceClientModel currently accepts client only; we pass runtime params in task text.
    model = InferenceClientModel(model_id=model_id, client=client)
    agent = CodeAgent(model=model, tools=[classify_and_score, QuestionRetrieverTool])
    agent._ui_params = {"temperature": temperature, "max_tokens": max_tokens}  # attach for reference
    return agent

# ------------------------ Gradio glue ------------------------------------
def run_pipeline(
    hf_token,
    topic,
    grade,
    subject,
    target_bloom,
    target_dok,
    attempts,
    model_id,
    provider,
    timeout,
    temperature,
    max_tokens,
    task_type
):
    # Build agent per run (or cache if you prefer)
    agent = make_agent(
        hf_token=hf_token.strip(),
        model_id=model_id,
        provider=provider,
        timeout=int(timeout),
        temperature=float(temperature),
        max_tokens=int(max_tokens),
    )
    template = TASK_TEMPLATES[task_type]
    task = template.format(
        grade=grade,
        topic=topic,
        subject=subject,
        target_bloom=target_bloom,
        target_dok=target_dok,
        attempts=int(attempts)
    )

    # The agent will internally call the tool
    try:
        result_text = agent.run(task, max_steps=int(attempts) * 4)
    except Exception as e:
        result_text = f"ERROR: {e}"

    # Try to extract final JSON
    final_json = ""
    try:
        # find JSON object in result_text (simple heuristic)
        start = result_text.find("{")
        end = result_text.rfind("}")
        if start != -1 and end != -1 and end > start:
            candidate = result_text[start:end+1]
            final_json = json.dumps(json.loads(candidate), indent=2)
    except Exception:
        final_json = ""

    return final_json, result_text

with gr.Blocks() as demo:
    gr.Markdown("# Agent + Tool: Generate Questions to Target Difficulty")
    gr.Markdown(
        "This app uses a **CodeAgent** that *calls the scoring tool* "
        "(`classify_and_score`) after each proposal, and revises until it hits the target."
    )

    with gr.Accordion("API Settings", open=False):
        hf_token = gr.Textbox(label="Hugging Face Token (required)", type="password")
        model_id = gr.Textbox(value="meta-llama/Llama-4-Scout-17B-16E-Instruct", label="Model ID")
        provider = gr.Textbox(value="novita", label="Provider")
        timeout = gr.Slider(5, 120, value=30, step=1, label="Timeout (s)")

    with gr.Row():
        topic = gr.Textbox(value="Fractions", label="Topic")
        grade = gr.Dropdown(
            choices=["Grade 1","Grade 2","Grade 3","Grade4","Grade 5","Grade 6","Grade 7","Grade 8","Grade 9",
                     "Grade 10","Grade 11","Grade 12","Under Graduate","Post Graduate"],
            value="Grade 7",
            label="Grade"
        )
        subject = gr.Textbox(value="Math", label="Subject")
        task_type = gr.Dropdown(
            choices=[("RAG Template", "rag_temp"),
                     ("RAG+CLS Template", "rag_cls_temp"),
                     ("Classification Template", "cls_temp"),
                     ("Generation Template", "gen_temp")],
            label="task type"
        )

    with gr.Row():
        target_bloom = gr.Dropdown(
            choices=["Remember","Understand","Apply","Analyze","Evaluate","Create","Apply+","Analyze+","Evaluate+"],
            value="Analyze",
            label="Target Bloom’s"
        )
        target_dok = gr.Dropdown(
            choices=["DOK1","DOK2","DOK3","DOK4","DOK1-DOK2","DOK2-DOK3","DOK3-DOK4"],
            value="DOK2-DOK3",
            label="Target DOK"
        )
        attempts = gr.Slider(1, 8, value=5, step=1, label="Max Attempts")

    with gr.Accordion("Generation Controls", open=False):
        temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
        max_tokens = gr.Slider(64, 1024, value=300, step=16, label="Max Tokens")

    run_btn = gr.Button("Run Agent")

    final_json = gr.Code(label="Final Candidate (JSON if detected)", language="json")
    transcript = gr.Textbox(label="Agent Transcript", lines=18)

    run_btn.click(
        fn=run_pipeline,
        inputs=[hf_token, topic, grade, subject, target_bloom, target_dok, attempts, model_id, provider, timeout, temperature, max_tokens, task_type],
        outputs=[final_json, transcript]
    )

if __name__ == "__main__":
    demo.launch(share=True)