lostfound-hack / app.py
hackerloi45's picture
Add app and requirements
746bf5b
raw
history blame
7.85 kB
# app.py
import os
import uuid
import io
from PIL import Image
import gradio as gr
import numpy as np
# CLIP via Sentence-Transformers (text+image to same 512-dim space)
from sentence_transformers import SentenceTransformer
# Gemini (Google) client
from google import genai
# Qdrant client & helpers
from qdrant_client import QdrantClient
from qdrant_client.http.models import VectorParams, Distance, PointStruct
# -------------------------
# CONFIG (reads env vars)
# -------------------------
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") # set in Hugging Face Space secrets
QDRANT_URL = os.environ.get("QDRANT_URL") # set in Hugging Face Space secrets
QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") # set in Hugging Face Space secrets
# Local fallbacks (for local testing) - set them before running locally if needed:
# os.environ["GEMINI_API_KEY"]="..." ; os.environ["QDRANT_URL"]="..." ; os.environ["QDRANT_API_KEY"]="..."
# -------------------------
# Initialize clients/models
# -------------------------
print("Loading CLIP model (this may take 20-60s the first time)...")
MODEL_ID = "sentence-transformers/clip-ViT-B-32-multilingual-v1"
clip_model = SentenceTransformer(MODEL_ID) # model maps text & images to same vector space
# Gemini client (for tags/captions)
if GEMINI_API_KEY:
genai_client = genai.Client(api_key=GEMINI_API_KEY)
else:
genai_client = None
# Qdrant client
if not QDRANT_URL:
# If you prefer local Qdrant for dev: client = QdrantClient(":memory:") or local url
raise RuntimeError("Please set QDRANT_URL environment variable")
qclient = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY)
COLLECTION = "lost_found_items"
VECTOR_SIZE = 512
# Create collection if missing
if not qclient.collection_exists(COLLECTION):
qclient.create_collection(
collection_name=COLLECTION,
vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE),
)
# -------------------------
# Helpers
# -------------------------
def embed_text(text: str):
vec = clip_model.encode(text, convert_to_numpy=True)
return vec
def embed_image_pil(pil_img: Image.Image):
# sentence-transformers supports directly encoding a PIL image for CLIP models
vec = clip_model.encode(pil_img, convert_to_numpy=True)
return vec
def gen_tags_from_image_file(local_path: str) -> str:
"""Upload image file to Gemini and ask for 4 short tags.
Returns the raw text response (expected comma-separated tags)."""
if genai_client is None:
return ""
# Upload file (Gemini Developer API supports client.files.upload)
file_obj = genai_client.files.upload(file=local_path)
# Ask Gemini: produce short tags only
prompt_text = (
"Give 4 short tags (comma-separated) describing this item in the image. "
"Tags should be short single words or two-word phrases (e.g. 'black backpack', 'water bottle'). "
"Respond only with tags, no extra explanation."
)
response = genai_client.models.generate_content(
model="gemini-2.5-flash",
contents=[prompt_text, file_obj],
)
return response.text.strip()
# -------------------------
# App logic: add item
# -------------------------
def add_item(mode: str, uploaded_image, text_description: str):
"""
mode: 'lost' or 'found'
uploaded_image: PIL image or None
text_description: str
"""
item_id = str(uuid.uuid4())
payload = {"mode": mode, "text": text_description}
if uploaded_image is not None:
# Save image to temp file (so we can upload to Gemini)
tmp_path = f"/tmp/{item_id}.png"
uploaded_image.save(tmp_path)
# embed image
vec = embed_image_pil(uploaded_image).tolist()
payload["has_image"] = True
# optional: get tags from Gemini (if available)
try:
tags = gen_tags_from_image_file(tmp_path)
except Exception as e:
tags = ""
payload["tags"] = tags
# store image bytes (tiny) so we can show result in the UI (base64)
with open(tmp_path, "rb") as f:
b64 = f.read()
payload["image_b64"] = True # flag (we will return/show image via Gradio from file bytes)
else:
# only text provided
vec = embed_text(text_description).tolist()
payload["has_image"] = False
# ask Gemini to suggest tags from text
if genai_client:
try:
resp = genai_client.models.generate_content(
model="gemini-2.5-flash",
contents=f"Give 4 short, comma-separated tags for this item described as: {text_description}. Reply only with tags."
)
payload["tags"] = resp.text.strip()
except Exception:
payload["tags"] = ""
else:
payload["tags"] = ""
# Upsert into Qdrant
point = PointStruct(id=item_id, vector=vec, payload=payload)
qclient.upsert(collection_name=COLLECTION, points=[point], wait=True)
return f"Saved item id: {item_id}\nTags: {payload.get('tags','')}"
# -------------------------
# App logic: search
# -------------------------
def search_items(query_image, query_text, limit: int = 5):
# produce query embedding
if query_image is not None:
qvec = embed_image_pil(query_image).tolist()
q_type = "image"
else:
if (not query_text) or (len(query_text.strip()) == 0):
return "Please provide a query image or some query text."
qvec = embed_text(query_text).tolist()
q_type = "text"
hits = qclient.search(collection_name=COLLECTION, query_vector=qvec, limit=limit)
# Format output (list)
results = []
for h in hits:
payload = h.payload or {}
score = getattr(h, "score", None)
results.append(
{
"id": h.id,
"score": float(score) if score is not None else None,
"mode": payload.get("mode", ""),
"text": payload.get("text", ""),
"tags": payload.get("tags", ""),
"has_image": payload.get("has_image", False),
}
)
# Return a simple list for Gradio to show
if not results:
return "No results."
# Convert to text for display
out_lines = []
for r in results:
out_lines.append(f"id:{r['id']} score:{r['score']:.4f} mode:{r['mode']} tags:{r['tags']} text:{r['text']}")
return "\n\n".join(out_lines)
# -------------------------
# Gradio UI
# -------------------------
with gr.Blocks(title="Lost & Found — Simple Helper") as demo:
gr.Markdown("## Lost & Found Helper (image/text search) — upload items, then search by image or text.")
with gr.Row():
with gr.Column():
mode = gr.Radio(choices=["lost", "found"], value="lost", label="Add as")
upload_img = gr.Image(type="pil", label="Item photo (optional)")
text_desc = gr.Textbox(lines=2, placeholder="Short description (e.g. 'black backpack with blue zipper')", label="Description (optional)")
add_btn = gr.Button("Add item")
add_out = gr.Textbox(label="Add result", interactive=False)
with gr.Column():
gr.Markdown("### Search")
query_img = gr.Image(type="pil", label="Search by image (optional)")
query_text = gr.Textbox(lines=2, label="Search by text (optional)")
search_btn = gr.Button("Search")
search_out = gr.Textbox(label="Search results", interactive=False)
add_btn.click(add_item, inputs=[mode, upload_img, text_desc], outputs=[add_out])
search_btn.click(search_items, inputs=[query_img, query_text], outputs=[search_out])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)