Spaces:
Runtime error
Runtime error
| # app.py | |
| import os | |
| import uuid | |
| import io | |
| from PIL import Image | |
| import gradio as gr | |
| import numpy as np | |
| # CLIP via Sentence-Transformers (text+image to same 512-dim space) | |
| from sentence_transformers import SentenceTransformer | |
| # Gemini (Google) client | |
| from google import genai | |
| # Qdrant client & helpers | |
| from qdrant_client import QdrantClient | |
| from qdrant_client.http.models import VectorParams, Distance, PointStruct | |
| # ------------------------- | |
| # CONFIG (reads env vars) | |
| # ------------------------- | |
| GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") # set in Hugging Face Space secrets | |
| QDRANT_URL = os.environ.get("QDRANT_URL") # set in Hugging Face Space secrets | |
| QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY") # set in Hugging Face Space secrets | |
| # Local fallbacks (for local testing) - set them before running locally if needed: | |
| # os.environ["GEMINI_API_KEY"]="..." ; os.environ["QDRANT_URL"]="..." ; os.environ["QDRANT_API_KEY"]="..." | |
| # ------------------------- | |
| # Initialize clients/models | |
| # ------------------------- | |
| print("Loading CLIP model (this may take 20-60s the first time)...") | |
| MODEL_ID = "sentence-transformers/clip-ViT-B-32-multilingual-v1" | |
| clip_model = SentenceTransformer(MODEL_ID) # model maps text & images to same vector space | |
| # Gemini client (for tags/captions) | |
| if GEMINI_API_KEY: | |
| genai_client = genai.Client(api_key=GEMINI_API_KEY) | |
| else: | |
| genai_client = None | |
| # Qdrant client | |
| if not QDRANT_URL: | |
| # If you prefer local Qdrant for dev: client = QdrantClient(":memory:") or local url | |
| raise RuntimeError("Please set QDRANT_URL environment variable") | |
| qclient = QdrantClient(url=QDRANT_URL, api_key=QDRANT_API_KEY) | |
| COLLECTION = "lost_found_items" | |
| VECTOR_SIZE = 512 | |
| # Create collection if missing | |
| if not qclient.collection_exists(COLLECTION): | |
| qclient.create_collection( | |
| collection_name=COLLECTION, | |
| vectors_config=VectorParams(size=VECTOR_SIZE, distance=Distance.COSINE), | |
| ) | |
| # ------------------------- | |
| # Helpers | |
| # ------------------------- | |
| def embed_text(text: str): | |
| vec = clip_model.encode(text, convert_to_numpy=True) | |
| return vec | |
| def embed_image_pil(pil_img: Image.Image): | |
| # sentence-transformers supports directly encoding a PIL image for CLIP models | |
| vec = clip_model.encode(pil_img, convert_to_numpy=True) | |
| return vec | |
| def gen_tags_from_image_file(local_path: str) -> str: | |
| """Upload image file to Gemini and ask for 4 short tags. | |
| Returns the raw text response (expected comma-separated tags).""" | |
| if genai_client is None: | |
| return "" | |
| # Upload file (Gemini Developer API supports client.files.upload) | |
| file_obj = genai_client.files.upload(file=local_path) | |
| # Ask Gemini: produce short tags only | |
| prompt_text = ( | |
| "Give 4 short tags (comma-separated) describing this item in the image. " | |
| "Tags should be short single words or two-word phrases (e.g. 'black backpack', 'water bottle'). " | |
| "Respond only with tags, no extra explanation." | |
| ) | |
| response = genai_client.models.generate_content( | |
| model="gemini-2.5-flash", | |
| contents=[prompt_text, file_obj], | |
| ) | |
| return response.text.strip() | |
| # ------------------------- | |
| # App logic: add item | |
| # ------------------------- | |
| def add_item(mode: str, uploaded_image, text_description: str): | |
| """ | |
| mode: 'lost' or 'found' | |
| uploaded_image: PIL image or None | |
| text_description: str | |
| """ | |
| item_id = str(uuid.uuid4()) | |
| payload = {"mode": mode, "text": text_description} | |
| if uploaded_image is not None: | |
| # Save image to temp file (so we can upload to Gemini) | |
| tmp_path = f"/tmp/{item_id}.png" | |
| uploaded_image.save(tmp_path) | |
| # embed image | |
| vec = embed_image_pil(uploaded_image).tolist() | |
| payload["has_image"] = True | |
| # optional: get tags from Gemini (if available) | |
| try: | |
| tags = gen_tags_from_image_file(tmp_path) | |
| except Exception as e: | |
| tags = "" | |
| payload["tags"] = tags | |
| # store image bytes (tiny) so we can show result in the UI (base64) | |
| with open(tmp_path, "rb") as f: | |
| b64 = f.read() | |
| payload["image_b64"] = True # flag (we will return/show image via Gradio from file bytes) | |
| else: | |
| # only text provided | |
| vec = embed_text(text_description).tolist() | |
| payload["has_image"] = False | |
| # ask Gemini to suggest tags from text | |
| if genai_client: | |
| try: | |
| resp = genai_client.models.generate_content( | |
| model="gemini-2.5-flash", | |
| contents=f"Give 4 short, comma-separated tags for this item described as: {text_description}. Reply only with tags." | |
| ) | |
| payload["tags"] = resp.text.strip() | |
| except Exception: | |
| payload["tags"] = "" | |
| else: | |
| payload["tags"] = "" | |
| # Upsert into Qdrant | |
| point = PointStruct(id=item_id, vector=vec, payload=payload) | |
| qclient.upsert(collection_name=COLLECTION, points=[point], wait=True) | |
| return f"Saved item id: {item_id}\nTags: {payload.get('tags','')}" | |
| # ------------------------- | |
| # App logic: search | |
| # ------------------------- | |
| def search_items(query_image, query_text, limit: int = 5): | |
| # produce query embedding | |
| if query_image is not None: | |
| qvec = embed_image_pil(query_image).tolist() | |
| q_type = "image" | |
| else: | |
| if (not query_text) or (len(query_text.strip()) == 0): | |
| return "Please provide a query image or some query text." | |
| qvec = embed_text(query_text).tolist() | |
| q_type = "text" | |
| hits = qclient.search(collection_name=COLLECTION, query_vector=qvec, limit=limit) | |
| # Format output (list) | |
| results = [] | |
| for h in hits: | |
| payload = h.payload or {} | |
| score = getattr(h, "score", None) | |
| results.append( | |
| { | |
| "id": h.id, | |
| "score": float(score) if score is not None else None, | |
| "mode": payload.get("mode", ""), | |
| "text": payload.get("text", ""), | |
| "tags": payload.get("tags", ""), | |
| "has_image": payload.get("has_image", False), | |
| } | |
| ) | |
| # Return a simple list for Gradio to show | |
| if not results: | |
| return "No results." | |
| # Convert to text for display | |
| out_lines = [] | |
| for r in results: | |
| out_lines.append(f"id:{r['id']} score:{r['score']:.4f} mode:{r['mode']} tags:{r['tags']} text:{r['text']}") | |
| return "\n\n".join(out_lines) | |
| # ------------------------- | |
| # Gradio UI | |
| # ------------------------- | |
| with gr.Blocks(title="Lost & Found — Simple Helper") as demo: | |
| gr.Markdown("## Lost & Found Helper (image/text search) — upload items, then search by image or text.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| mode = gr.Radio(choices=["lost", "found"], value="lost", label="Add as") | |
| upload_img = gr.Image(type="pil", label="Item photo (optional)") | |
| text_desc = gr.Textbox(lines=2, placeholder="Short description (e.g. 'black backpack with blue zipper')", label="Description (optional)") | |
| add_btn = gr.Button("Add item") | |
| add_out = gr.Textbox(label="Add result", interactive=False) | |
| with gr.Column(): | |
| gr.Markdown("### Search") | |
| query_img = gr.Image(type="pil", label="Search by image (optional)") | |
| query_text = gr.Textbox(lines=2, label="Search by text (optional)") | |
| search_btn = gr.Button("Search") | |
| search_out = gr.Textbox(label="Search results", interactive=False) | |
| add_btn.click(add_item, inputs=[mode, upload_img, text_desc], outputs=[add_out]) | |
| search_btn.click(search_items, inputs=[query_img, query_text], outputs=[search_out]) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860) | |