File size: 2,724 Bytes
0dfc187 7a13824 c248483 6298bb9 c20305d 7b9aa9d 13a2046 7b9aa9d 13a2046 33179dc 0dfc187 6298bb9 0dfc187 6298bb9 0dfc187 7b9aa9d 0dfc187 6298bb9 0dfc187 6298bb9 0dfc187 d7f02ec 7b9aa9d d7f02ec 7b9aa9d 7e241d8 5469b0c 0dfc187 7b9aa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import gradio as gr
from gradio_client import Client
from PIL import Image
import os
import time
import traceback
# Create Client instances for the repositories
clients = [
Client("hsuwill000/LCM_SoteMix_OpenVINO_CPU_Space_TAESD"),
Client("HelloSun/LCM_Dreamshaper_v7-int8-ov")
]
# Counter for image filenames to avoid overwriting
count = 0
# Global counter for selecting clients in order
client_index = 0
# Gradio Interface Function to handle image generation
def infer_gradio(prompt: str):
global count, client_index
# Select the current client based on the client_index
client = clients[client_index]
# Prepare the inputs for the prediction
inputs = {
"prompt": prompt,
"num_inference_steps": 10 # Number of inference steps for the model
}
try:
# Send the request to the model and receive the result (image URL or file path)
result = client.predict(inputs, api_name="/infer")
# Open the resulting image
image = Image.open(result)
# Create a unique filename to save the image
filename = f"img_{count:08d}.jpg"
while os.path.exists(filename):
count += 1
filename = f"img_{count:08d}.jpg"
# Save the image locally
image.save(filename)
print(f"Saved image as {filename}")
# Return the image to be displayed in Gradio
# Update the client_index to use the next client in the next call
client_index = (client_index + 1) % len(clients) # Cycle through clients
return image
except Exception as e:
# Handle any errors that occur
print(f"An exception occurred: {str(e)}")
print("Stack trace:")
traceback.print_exc() # Print stack trace for debugging
return None # Return nothing if an error occurs
# Define Gradio Interface
with gr.Blocks() as demo:
with gr.Row(): # Use a Row to place the prompt input and the button side by side
prompt_input = gr.Textbox(
label="Enter Your Prompt",
show_label=False,
placeholder="Type your prompt for image generation here",
lines=1, # Set the input to be only one line tall
interactive=True # Allow user to interact with the textbox
)
# Change the button text to "RUN" and align it with the prompt input
run_button = gr.Button("RUN")
# Output image display area
output_image = gr.Image(label="Generated Image")
# Connecting the button click to the image generation function
run_button.click(infer_gradio, inputs=prompt_input, outputs=output_image)
demo.launch()
|