File size: 23,103 Bytes
7a55e1e
 
 
8489953
ea2048b
6152a26
 
7e1f32d
 
 
7a55e1e
 
7e1f32d
177da0d
604587a
 
d71bc6d
7a55e1e
6152a26
 
 
 
 
ea2048b
6152a26
ea2048b
6152a26
8489953
7a55e1e
 
 
 
 
 
 
 
 
 
bc49183
7e1f32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604587a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aaa52d
604587a
 
8aaa52d
604587a
8aaa52d
 
 
 
 
604587a
8aaa52d
 
 
 
 
 
 
 
 
604587a
 
 
 
 
 
8aaa52d
604587a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa2b99c
7e1f32d
3959304
aa2b99c
7e1f32d
 
 
 
 
 
 
 
 
 
 
aa2b99c
7e1f32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604587a
3959304
604587a
3959304
 
604587a
3959304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aaa52d
3959304
 
 
 
 
 
 
 
 
 
8aaa52d
3959304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604587a
3959304
d71bc6d
d7ea6d3
7e1f32d
6152a26
604587a
6152a26
7e1f32d
8aaa52d
6152a26
7e1f32d
8aaa52d
6152a26
7e1f32d
7a55e1e
 
 
 
6152a26
7e1f32d
 
 
 
 
 
 
8aaa52d
7e1f32d
604587a
 
 
8aaa52d
 
 
 
 
 
604587a
7e1f32d
 
177da0d
7e1f32d
 
 
 
177da0d
 
 
 
 
 
3959304
177da0d
 
 
 
 
 
 
604587a
 
 
177da0d
 
3959304
604587a
3959304
 
604587a
8aaa52d
 
3959304
 
8aaa52d
 
3959304
 
 
604587a
8aaa52d
177da0d
 
 
 
 
 
 
 
 
8aaa52d
177da0d
 
8aaa52d
 
 
 
 
177da0d
7e1f32d
 
8aaa52d
7e1f32d
 
8aaa52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1f32d
8aaa52d
7e1f32d
 
8aaa52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177da0d
8aaa52d
 
 
6152a26
 
7a55e1e
 
 
 
 
8aaa52d
7a55e1e
 
 
 
 
 
 
8aaa52d
7a55e1e
 
 
 
 
7e1f32d
7a55e1e
 
 
6152a26
 
7e1f32d
 
 
 
 
8aaa52d
 
 
 
 
 
 
 
 
604587a
8aaa52d
 
177da0d
 
7a55e1e
7e1f32d
8aaa52d
 
 
 
 
177da0d
8aaa52d
6152a26
 
 
 
 
7e1f32d
8aaa52d
7e1f32d
 
 
 
6152a26
 
177da0d
8aaa52d
177da0d
6152a26
7e1f32d
6152a26
7e1f32d
 
 
 
 
 
fc5f5ea
8aaa52d
6152a26
7e1f32d
fc5f5ea
8aaa52d
fc5f5ea
 
 
7e1f32d
8aaa52d
 
 
 
 
 
 
 
 
 
 
 
7e1f32d
 
177da0d
 
 
 
604587a
8aaa52d
 
 
 
 
 
 
 
 
177da0d
 
6152a26
 
8aaa52d
7e1f32d
 
8aaa52d
7e1f32d
 
8aaa52d
7e1f32d
 
 
 
 
8aaa52d
7e1f32d
6152a26
7e1f32d
fc5f5ea
8aaa52d
fc5f5ea
7e1f32d
 
 
 
 
 
6152a26
7e1f32d
604587a
8aaa52d
6152a26
 
7a55e1e
 
bc49183
177da0d
 
 
 
 
 
8aaa52d
 
 
177da0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import os
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "0")  # disable hf_transfer if missing

import gradio as gr
import torch
from transformers import AutoModel, AutoTokenizer
import spaces
import tempfile
from PIL import Image
import re
from gradio.themes import Soft
from gradio.themes.utils import fonts
import fitz  # PyMuPDF for PDF processing
import gc
import base64
from io import BytesIO

# ===== Model Load =====
model_name = "deepseek-ai/DeepSeek-OCR"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(
    model_name,
    _attn_implementation="flash_attention_2",
    trust_remote_code=True,
    use_safetensors=True,
)
model = model.eval()

# fallback if flash-attn is unavailable
try:
    import flash_attn  # noqa
except Exception:
    if hasattr(model, "config"):
        try:
            model.config._attn_implementation = "sdpa"
        except Exception:
            pass


def pdf_to_images(pdf_path, dpi=200):
    """
    Convert PDF pages to PIL Images using PyMuPDF
    Args:
        pdf_path: Path to PDF file
        dpi: Resolution for rendering (default 200)
    Returns:
        List of PIL Image objects
    """
    images = []
    pdf_document = fitz.open(pdf_path)
    
    for page_num in range(len(pdf_document)):
        page = pdf_document[page_num]
        # Render page to pixmap with specified DPI
        mat = fitz.Matrix(dpi / 72, dpi / 72)  # 72 is default DPI
        pix = page.get_pixmap(matrix=mat)
        
        # Convert to PIL Image
        img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
        images.append(img)
    
    pdf_document.close()
    return images


def extract_images_from_pdf(pdf_path):
    """
    Extract embedded images from PDF using PyMuPDF
    Returns dict: {page_num: [list of PIL Images]}
    """
    pdf_document = fitz.open(pdf_path)
    images_by_page = {}
    
    for page_num in range(len(pdf_document)):
        page = pdf_document[page_num]
        image_list = page.get_images()
        page_images = []
        
        for img_index, img in enumerate(image_list):
            xref = img[0]
            try:
                base_image = pdf_document.extract_image(xref)
                image_bytes = base_image["image"]
                pil_image = Image.open(BytesIO(image_bytes))
                page_images.append(pil_image)
            except Exception as e:
                print(f"Could not extract image {img_index} from page {page_num}: {e}")
                continue
        
        if page_images:
            images_by_page[page_num] = page_images
    
    pdf_document.close()
    return images_by_page


def image_to_base64(pil_image, format='JPEG', max_size=(1200, 1200)):
    """
    Convert PIL Image to base64 string for markdown embedding
    Resize if too large to keep file size manageable
    """
    # Resize if image is too large
    if pil_image.size[0] > max_size[0] or pil_image.size[1] > max_size[1]:
        pil_image = pil_image.copy()
        pil_image.thumbnail(max_size, Image.Resampling.LANCZOS)
    
    buffered = BytesIO()
    
    # Convert RGBA to RGB if necessary
    if pil_image.mode == 'RGBA' and format == 'JPEG':
        rgb_image = Image.new('RGB', pil_image.size, (255, 255, 255))
        rgb_image.paste(pil_image, mask=pil_image.split()[3])
        rgb_image.save(buffered, format=format, quality=85)
    else:
        pil_image.save(buffered, format=format, quality=85 if format == 'JPEG' else None)
    
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/{format.lower()};base64,{img_str}"


def detect_figure_regions(text_result, original_image):
    """
    Detect figure regions from OCR output using bounding boxes
    Returns list of cropped figure images
    """
    figure_images = []
    
    # Pattern to detect bounding boxes (if model returns them)
    pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
    matches = list(pattern.finditer(text_result or ""))
    
    if matches and len(matches) > 0:
        w, h = original_image.size
        for match in matches:
            x1, y1, x2, y2 = [int(c) for c in match.groups()]
            # Convert from normalized coordinates (0-1000) to actual pixels
            x1 = int(x1 / 1000 * w)
            y1 = int(y1 / 1000 * h)
            x2 = int(x2 / 1000 * w)
            y2 = int(y2 / 1000 * h)
            
            # Crop the region
            cropped = original_image.crop((x1, y1, x2, y2))
            figure_images.append(cropped)
    
    return figure_images


def process_single_page(image, model_runtime, tokenizer, model_size, task_type, ref_text, is_eval_mode, output_path, page_num, embed_images=True):
    """
    Process a single page/image with DeepSeek-OCR
    Returns markdown content with embedded images inline with context
    """
    # ===== choose task prompt =====
    if task_type == "📝 Free OCR":
        prompt = "<image>\nFree OCR."
    elif task_type == "📄 Convert to Markdown":
        prompt = "<image>\n<|grounding|>Convert the document to markdown."
    elif task_type == "📈 Parse Figure":
        prompt = "<image>\nParse the figure."
    elif task_type == "🔍 Locate Object by Reference":
        if not ref_text or ref_text.strip() == "":
            raise gr.Error("Please provide reference text for the Locate task!")
        prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
    else:
        prompt = "<image>\nFree OCR."

    # save image temporarily
    temp_image_path = os.path.join(output_path, "temp_image.jpg")
    image.save(temp_image_path)

    # ===== size config =====
    size_configs = {
        "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
        "Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
        "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
        "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
        "Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
    }
    config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])

    # ===== inference =====
    with torch.no_grad():
        plain_text_result = model_runtime.infer(
            tokenizer,
            prompt=prompt,
            image_file=temp_image_path,
            output_path=output_path,
            base_size=config["base_size"],
            image_size=config["image_size"],
            crop_mode=config["crop_mode"],
            save_results=True,
            test_compress=True,
            eval_mode=is_eval_mode,
        )

    # ===== collect markdown result =====
    markdown_result_path = os.path.join(output_path, "result.mmd")
    markdown_content = ""
    
    if os.path.exists(markdown_result_path):
        try:
            with open(markdown_result_path, "r", encoding="utf-8") as f:
                markdown_content = f.read()
        except Exception:
            pass
    
    # If no markdown file, use plain text result
    if not markdown_content and plain_text_result:
        markdown_content = plain_text_result
    
    # ===== Embed images if requested =====
    embedded_images_list = []
    if embed_images and markdown_content:
        # Extract embedded PDF images first (logos, seals, etc.)
        figure_images = detect_figure_regions(plain_text_result, image)
        
        # Detect document type for smart placement
        is_certificate = any(word in markdown_content.lower() for word in ['sertifikat', 'certificate', 'pengesahan', 'approval'])
        is_letter = any(word in markdown_content.lower() for word in ['surat', 'letter', 'memo', 'kementerian', 'ministry'])
        has_logo = 'logo' in markdown_content.lower() or 'seal' in markdown_content.lower()
        
        # For certificates and official letters, embed full page at top
        if (is_certificate or is_letter or has_logo) and len(markdown_content.split()) > 20:
            try:
                base64_img = image_to_base64(image, format='JPEG')
                # Find the first heading or title
                lines = markdown_content.split('\n')
                insert_pos = 0
                
                # Look for the first significant heading (##, ###, or all-caps line)
                for i, line in enumerate(lines):
                    stripped = line.strip()
                    if stripped.startswith('##') or (stripped.isupper() and len(stripped.split()) >= 3):
                        insert_pos = i + 1
                        break
                
                # Insert image right after the title
                if insert_pos > 0:
                    lines.insert(insert_pos, f"\n![Page {page_num} - Official Document]({base64_img})\n")
                    markdown_content = '\n'.join(lines)
                else:
                    # No clear heading, insert at top
                    markdown_content = f"![Page {page_num}]({base64_img})\n\n" + markdown_content
                    
            except Exception as e:
                print(f"Error embedding page image: {e}")
        
        # If specific figures detected (charts, graphs), embed them inline
        elif figure_images:
            figures_markdown = "\n\n"
            for idx, fig_img in enumerate(figure_images):
                try:
                    base64_img = image_to_base64(fig_img, format='PNG')
                    figures_markdown += f"![Figure {idx+1}]({base64_img})\n\n"
                except Exception as e:
                    print(f"Error embedding figure {idx+1}: {e}")
            
            # Insert after the first paragraph
            paragraphs = markdown_content.split('\n\n', 1)
            if len(paragraphs) >= 2:
                markdown_content = paragraphs[0] + figures_markdown + paragraphs[1]
            else:
                markdown_content = figures_markdown + markdown_content
        
        # For pages with charts/graphs mentioned but not detected
        elif any(word in markdown_content.lower() for word in ['chart', 'graph', 'diagram', 'figure']):
            try:
                base64_img = image_to_base64(image, format='JPEG')
                # Insert after first mention of chart/graph
                for keyword in ['chart', 'graph', 'diagram', 'figure']:
                    if keyword in markdown_content.lower():
                        parts = markdown_content.lower().split(keyword, 1)
                        # Find the position in the original text
                        pos = len(parts[0])
                        # Insert image after the current paragraph
                        para_end = markdown_content.find('\n\n', pos)
                        if para_end > 0:
                            markdown_content = markdown_content[:para_end] + f"\n\n![Visual Content]({base64_img})\n\n" + markdown_content[para_end+2:]
                        else:
                            markdown_content += f"\n\n![Visual Content]({base64_img})\n\n"
                        break
            except Exception as e:
                print(f"Error embedding contextual image: {e}")
    
    return markdown_content, plain_text_result, embedded_images_list


# ===== Main Processing Function =====
@spaces.GPU
def process_pdf(pdf_file, model_size, task_type, ref_text, is_eval_mode, embed_images, progress=gr.Progress()):
    """
    Process PDF with DeepSeek-OCR and return combined markdown from all pages.
    Includes both visual images and extracted text content.
    """
    if pdf_file is None:
        return "Please upload a PDF file first.", "Please upload a PDF file first."

    # handle CPU/GPU
    if torch.cuda.is_available():
        model_runtime = model.to("cuda", dtype=torch.bfloat16)
    else:
        model_runtime = model.to("cpu", dtype=torch.float32)

    try:
        # Convert PDF to images
        progress(0, desc="Converting PDF to images...")
        images = pdf_to_images(pdf_file.name)
        total_pages = len(images)
        
        if total_pages == 0:
            return "No pages found in the PDF.", "No pages found in the PDF."
        
        # Extract embedded images if needed
        embedded_images = {}
        if embed_images:
            progress(0.05, desc="Extracting embedded images from PDF...")
            try:
                embedded_images = extract_images_from_pdf(pdf_file.name)
                print(f"Found embedded images on {len(embedded_images)} pages")
            except Exception as e:
                print(f"Could not extract embedded images: {e}")
        
        progress(0.1, desc=f"Found {total_pages} pages. Starting OCR...")
        
        # Process each page with memory management
        all_markdown_results = []
        
        with tempfile.TemporaryDirectory() as output_path:
            for page_num, image in enumerate(images, start=1):
                try:
                    progress(
                        (page_num / total_pages) * 0.9 + 0.1,
                        desc=f"Processing page {page_num}/{total_pages}..."
                    )
                    
                    markdown_content, plain_text, page_embedded_imgs = process_single_page(
                        image,
                        model_runtime,
                        tokenizer,
                        model_size,
                        task_type,
                        ref_text,
                        is_eval_mode,
                        output_path,
                        page_num,
                        embed_images
                    )
                    
                    # Add embedded images from PDF inline if any
                    if embed_images and (page_num - 1) in embedded_images:
                        # Insert PDF images right after the OCR'd content, but before page separator
                        pdf_images_markdown = "\n\n"
                        for idx, img in enumerate(embedded_images[page_num - 1]):
                            try:
                                base64_img = image_to_base64(img, format='PNG')
                                # Add inline without a big header
                                pdf_images_markdown += f"![Image {idx+1}]({base64_img})\n\n"
                            except Exception as e:
                                print(f"Error embedding PDF image {idx+1}: {e}")
                        
                        # Append to the markdown content directly (inline)
                        markdown_content += pdf_images_markdown
                    
                    # Add page separator and content
                    page_header = f"\n\n---\n\n# Page {page_num}\n\n"
                    all_markdown_results.append(page_header + markdown_content)
                    
                    # Clear memory after each page to prevent accumulation
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
                    gc.collect()
                    
                except Exception as e:
                    error_msg = f"\n\n---\n\n# Page {page_num}\n\n**⚠️ Error processing this page:** {str(e)}\n\n"
                    all_markdown_results.append(error_msg)
                    print(f"Error on page {page_num}: {str(e)}")
                    
                    # Clear memory even on error
                    if torch.cuda.is_available():
                        torch.cuda.empty_cache()
                    gc.collect()
                    continue
        
        # Combine all results
        progress(1.0, desc="Finalizing document...")
        combined_markdown = "\n\n".join(all_markdown_results)
        
        # Add document header with metadata
        image_status = "✅ Enabled" if embed_images else "❌ Disabled"
        final_output = f"""# 📄 Document OCR Results

**Total Pages:** {total_pages}  
**Model Size:** {model_size}  
**Task Type:** {task_type}  
**Image Embedding:** {image_status}

---

{combined_markdown}

---

**End of Document** - Processed {total_pages} pages successfully.
"""
        
        return final_output, final_output  # Return twice: once for preview, once for raw text
    
    except Exception as e:
        error_message = f"""# ❌ Error Processing PDF

**Error:** {str(e)}

**Troubleshooting Tips:**
- Try using a smaller model size (Tiny or Small)
- Disable image embedding for faster processing
- Check if the PDF is corrupted or password-protected
- For very large PDFs (50+ pages), consider processing in batches
- Ensure you have enough GPU memory available

**Technical Details:**
```
{str(e)}
```
"""
        print(f"Fatal error: {str(e)}")
        import traceback
        traceback.print_exc()
        return error_message, error_message  # Return twice: once for preview, once for raw text


# ===== Theme and UI =====
theme = Soft(
    font=fonts.GoogleFont("Inter"),
    font_mono=fonts.GoogleFont("JetBrains Mono"),
)

custom_css = """
.gradio-container, body {
  font-family: 'Inter', ui-sans-serif, system-ui, -apple-system, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, 'Noto Sans', 'Apple Color Emoji','Segoe UI Emoji','Segoe UI Symbol','Noto Color Emoji' !important;
}
.prose h1 { font-weight: 800; letter-spacing: -0.02em; }
.prose h2, .prose h3 { font-weight: 700; letter-spacing: -0.01em; }
.gr-button { border-radius: 12px; font-weight: 600; }
.prose img { max-width: 100%; height: auto; border-radius: 8px; margin: 1rem 0; }
"""


# ===== Interface =====
with gr.Blocks(
    title="DeepSeek-OCR PDF Parser by Jatevo LLM Inference",
    theme=theme,
    css=custom_css,
) as demo:
    gr.Markdown(
        """
        # 📄 DeepSeek-OCR PDF Parser by Jatevo LLM Inference
        
        Upload a PDF to extract text and convert to Markdown using **DeepSeek-OCR**.  
        Each page is processed sequentially and combined into a single markdown document.
        
        ## ✨ Features
        
        - 🖼️ **Image Embedding** - Charts, graphs, and figures embedded directly in markdown
        - 📝 **Text Extraction** - All text content from images and charts extracted
        - 📊 **Table Support** - Tables converted to markdown format
        - 🔍 **Object Detection** - Locate specific elements in documents
        - 🎯 **Multiple Models** - Choose speed vs. accuracy trade-off
        
        ## 📏 Model Sizes
        
        - **Tiny** — Fastest, lower accuracy (512×512) - Best for large PDFs (30+ pages)
        - **Small** — Fast, good accuracy (640×640) - Good for 15-30 pages
        - **Base** — Balanced performance (1024×1024) - Good for 10-20 pages
        - **Large** — Best accuracy, slower (1280×1280) - Best for <10 pages
        - **Gundam (Recommended)** — Optimized for documents (1024 base, 640 image, crop mode)
        
        ## 💡 Tips
        
        - Enable **"Embed Images"** to include charts/figures (recommended)
        - Use **Tiny or Small** model for large PDFs (20+ pages)
        - Processing time: ~2-5 seconds per page depending on model
        - Maximum recommended: 50 pages at once
        - Image embedding increases file size (~1-2MB per page with images)
        """
    )

    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(
                label="📎 Upload PDF",
                file_types=[".pdf"],
                type="filepath"
            )

            model_size = gr.Dropdown(
                choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
                value="Small",
                label="🎯 Model Size",
                info="Use Tiny/Small for large PDFs (20+ pages)"
            )

            task_type = gr.Dropdown(
                choices=[
                    "📝 Free OCR",
                    "📄 Convert to Markdown",
                    "📈 Parse Figure",
                    "🔍 Locate Object by Reference",
                ],
                value="📄 Convert to Markdown",
                label="📋 Task Type",
            )

            ref_text_input = gr.Textbox(
                label="🔍 Reference Text (for Locate task)",
                placeholder="e.g., 'the teacher', '20-10', 'a red car'...",
                visible=False,
            )

            with gr.Row():
                eval_mode_checkbox = gr.Checkbox(
                    value=False,
                    label="⚡ Evaluation Mode",
                    info="Plain text only (faster)",
                )
                
                embed_images_checkbox = gr.Checkbox(
                    value=True,
                    label="🖼️ Embed Images",
                    info="Include charts/figures in output",
                )

            submit_btn = gr.Button("🚀 Process PDF", variant="primary", size="lg")
            
            gr.Markdown(
                """
                ---
                
                ### 📊 Processing Status
                
                Watch the progress bar for real-time updates.
                
                **Note:** Image embedding provides both:
                - 👁️ Visual image (embedded as base64)
                - 📝 Extracted text content (OCR'd from image)
                
                You get the best of both worlds!
                """
            )

        with gr.Column(scale=2):
            gr.Markdown("### 📝 Markdown Output Preview")
            output_markdown_preview = gr.Markdown(
                label="Rendered Markdown",
                value="*Upload a PDF and click 'Process PDF' to see results here.*\n\n*The output will include both images and extracted text.*"
            )
            
            gr.Markdown("### 📄 Raw Markdown Source (Copy/Download)")
            output_text = gr.Textbox(
                label="Raw Markdown",
                lines=25,
                show_copy_button=True,
                interactive=False,
                placeholder="Markdown source will appear here... You can copy/paste this into any markdown editor."
            )

    # show/hide reference text box based on selected task
    def toggle_ref_text_visibility(task):
        return gr.Textbox(visible=(task == "🔍 Locate Object by Reference"))

    task_type.change(
        fn=toggle_ref_text_visibility,
        inputs=task_type,
        outputs=ref_text_input,
    )

    submit_btn.click(
        fn=process_pdf,
        inputs=[pdf_input, model_size, task_type, ref_text_input, eval_mode_checkbox, embed_images_checkbox],
        outputs=[output_markdown_preview, output_text],
    )


# ===== Launch =====
if __name__ == "__main__":
    # Increase timeout for large PDFs
    demo.queue(
        max_size=20,
        default_concurrency_limit=2
    )
    demo.launch(
        max_threads=40,  # Increase thread limit for better concurrency
        show_error=True,  # Show errors in UI for debugging
        share=False  # Set to True to create a public link
    )