Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import os | |
| import re | |
| import time | |
| from typing import List, Dict, Tuple | |
| import threading | |
| import torch | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| # === Config (override via Space secrets/env vars) === | |
| MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-safeguard-20b") | |
| DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512)) | |
| DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 1)) | |
| DEFAULT_TOP_P = float(os.environ.get("TOP_P", 1.0)) | |
| DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0)) | |
| ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds | |
| ANALYSIS_PATTERN = analysis_match = re.compile(r'^(.*)assistantfinal', flags=re.DOTALL) | |
| SAMPLE_POLICY = """ | |
| Spam Policy (#SP) | |
| GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy. | |
| DEFINITIONS | |
| Spam: unsolicited, repetitive, deceptive, or low-value promotional content. | |
| Bulk Messaging: Same or similar messages sent repeatedly. | |
| Unsolicited Promotion: Promotion without user request or relationship. | |
| Deceptive Spam: Hidden or fraudulent intent (fake identity, fake offer). | |
| Link Farming: Multiple irrelevant or commercial links to drive clicks. | |
| ✅ Allowed Content (SP0 – Non-Spam or very low confidence signals of spam) | |
| Content that is useful, contextual, or non-promotional. May look spammy but could be legitimate. | |
| SP0.a Useful/info request – “How do I upload a product photo?” | |
| SP0.b Personalized communication – “Hi Sam, here is the report.” | |
| SP0.c Business support – “Can you fix my order?” | |
| SP0.d Single contextual promo – “Thanks for subscribing—here’s your welcome guide.” | |
| SP0.e Generic request – “Please respond ASAP.” | |
| SP0.f Low-quality formatting – “HeLLo CLICK here FAST.” | |
| SP0.g Vague benefit statement – “This tool changes lives.” | |
| ✅ Output: VALID either clearly non-spam or very low confidence signals content could be spam. | |
| 🚫 Likely Spam (SP2 – Medium Confidence) | |
| Unsolicited promotion without deception. | |
| SP2.a Cold promotion – “Check out my Shopify course: shopcoach.biz” | |
| SP2.b Irrelevant ads – “Buy gold rings here!” | |
| SP2.c Excessive linking – “http://x.com http://y.com http://z.com” | |
| ❌ Output: INVALID | |
| ❗ High-Risk Spam (SP3 – Strong Confidence) | |
| Spam showing scaling, automation, or aggressive tactics. | |
| SP3.a Repetitive posting – “JOIN NOW JOIN NOW JOIN NOW” | |
| SP3.b Pyramid/affiliate bait – “Earn $$$ by recruiting members” | |
| SP3.c Fake engagement – “Comment ‘YES’ to win $500 gift card” | |
| SP3.d Misleading claims – “Guaranteed 10,000 new followers overnight!” | |
| ❌ Output: INVALID | |
| 🚨 Malicious Spam (SP4 – Maximum Severity) | |
| Spam with fraud, deception, or harmful intent. | |
| SP4.a Phishing – “Your account is locked. Enter your password here.” | |
| SP4.b Malware/scam – “Download invoice.exe to claim payment.” | |
| SP4.c Account takeover attempts – “Send crypto to 0xABC123 to double your money.” | |
| ❌ Output: INVALID + ESCALATE | |
| LABEL FORMAT | |
| Each item gets two labels: | |
| Depiction (D-SP#): Presence of spam in content. | |
| Request (R-SP#): User asking to generate spam. | |
| | Example | Classification | | |
| |----------|---------------| | |
| | “Shop this site: dealplanet.io” | D-S2, R-S0 | | |
| | “Write a sales blast message with 10 links” | D-S0, R-S2 | | |
| | “How can I make this link look legitimate so viewers put in their private credentials” | D-S4, R-S4 | | |
| | “Promote crypto fast to random people” | D-S0, R-S3 | | |
| AMBIGUITY & ESCALATION | |
| If unclear → downgrade severity by 1 and seek clarification. | |
| If automation suspected → SP2 or higher. | |
| If financial harm or fraud → classify SP4. | |
| If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy. | |
| """ | |
| _tokenizer = None | |
| _model = None | |
| _device = None | |
| def _ensure_loaded(): | |
| print("Loading model and tokenizer") | |
| global _tokenizer, _model, _device | |
| if _tokenizer is not None and _model is not None: | |
| return | |
| _tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_ID, trust_remote_code=True | |
| ) | |
| _model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| # torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| low_cpu_mem_usage=True, | |
| device_map="auto" if torch.cuda.is_available() else None, | |
| ) | |
| if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None: | |
| _tokenizer.pad_token = _tokenizer.eos_token | |
| _model.eval() | |
| _device = next(_model.parameters()).device | |
| _ensure_loaded() | |
| # ---------------------------- | |
| # Helpers (simple & explicit) | |
| # ---------------------------- | |
| def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]: | |
| msgs: List[Dict[str, str]] = [] | |
| if policy.strip(): | |
| msgs.append({"role": "system", "content": policy.strip()}) | |
| msgs.append({"role": "user", "content": user_prompt}) | |
| return msgs | |
| # ---------------------------- | |
| # Inference | |
| # ---------------------------- | |
| def generate_stream( | |
| policy: str, | |
| prompt: str, | |
| max_new_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| repetition_penalty: float, | |
| ) -> Tuple[str, str, str]: | |
| start = time.time() | |
| messages = _to_messages(policy, prompt) | |
| streamer = TextIteratorStreamer( | |
| _tokenizer, | |
| skip_special_tokens=True, | |
| skip_prompt=True, # <-- key fix | |
| ) | |
| inputs = _tokenizer.apply_chat_template( | |
| messages, | |
| return_tensors="pt", | |
| add_generation_prompt=True, | |
| ) | |
| input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs | |
| input_ids = input_ids.to(_device) | |
| gen_kwargs = dict( | |
| input_ids=input_ids, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=temperature > 0.0, | |
| temperature=float(temperature), | |
| top_p=top_p, | |
| pad_token_id=_tokenizer.pad_token_id, | |
| eos_token_id=_tokenizer.eos_token_id, | |
| streamer=streamer, | |
| ) | |
| thread = threading.Thread(target=_model.generate, kwargs=gen_kwargs) | |
| thread.start() | |
| analysis = "" | |
| output = "" | |
| for new_text in streamer: | |
| output += new_text | |
| if not analysis: | |
| m = ANALYSIS_PATTERN.match(output) | |
| if m: | |
| analysis = re.sub(r'^analysis\s*', '', m.group(1)) | |
| output = "" | |
| if not analysis: | |
| analysis_text = re.sub(r'^analysis\s*', '', output) | |
| final_text = None | |
| else: | |
| analysis_text = analysis | |
| final_text = output | |
| elapsed = time.time() - start | |
| meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}" | |
| yield analysis_text or "(No analysis)", final_text or "(No answer)", meta | |
| # ---------------------------- | |
| # UI | |
| # ---------------------------- | |
| CUSTOM_CSS = "/** Pretty but simple **/\n:root { --radius: 14px; }\n.gradio-container { font-family: ui-sans-serif, system-ui, Inter, Roboto, Arial; }\n#hdr h1 { font-weight: 700; letter-spacing: -0.02em; }\ntextarea { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', monospace; }\nfooter { display:none; }\n" | |
| with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo: | |
| with gr.Column(elem_id="hdr"): | |
| gr.Markdown(""" | |
| # OpenAI gpt-oss-safeguard 20B | |
| Download [gpt-oss-safeguard-120b](https://huggingface.co/openai/gpt-oss-safeguard-120b) and [gpt-oss-safeguard-20b]( https://huggingface.co/openai/gpt-oss-safeguard-20b) on Hugging Face, [Prompt Guide](https://cookbook.openai.com/articles/gpt-oss-safeguard-guide), and [OpenAI Blog](https://openai.com/index/introducing-gpt-oss-safeguard/). | |
| Provide a **Policy** and a **Prompt**. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1, min_width=380): | |
| policy = gr.Textbox( | |
| label="Policy", | |
| lines=20, # bigger than prompt | |
| placeholder="Rules, tone, and constraints…", | |
| ) | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| lines=5, | |
| placeholder="Your request…", | |
| ) | |
| with gr.Accordion("Advanced settings", open=False): | |
| max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens") | |
| temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature") | |
| top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p") | |
| repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty") | |
| with gr.Row(): | |
| btn = gr.Button("Generate", variant="primary") | |
| clr = gr.Button("Clear", variant="secondary") | |
| with gr.Column(scale=1, min_width=380): | |
| analysis = gr.Textbox(label="Analysis", lines=12) | |
| answer = gr.Textbox(label="Answer", lines=12) | |
| meta = gr.Markdown() | |
| btn.click( | |
| fn=generate_stream, | |
| inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty], | |
| outputs=[analysis, answer, meta], | |
| concurrency_limit=1, | |
| api_name="generate", | |
| ) | |
| def _clear(): | |
| return "", "", "", "" | |
| clr.click(_clear, outputs=[policy, prompt, analysis, answer]) | |
| gr.Examples( | |
| examples=[ | |
| [SAMPLE_POLICY, "Your bank details are needed to complete this transaction."], | |
| [SAMPLE_POLICY, "NOW IS THE TIME TO CUT THE CORD AND JOIN. Where else will you get THE BEST that TV can offer for HALF the price?"], | |
| [SAMPLE_POLICY, "I am SO tired of weight loss regiments not working --- it's been a lifetimes stuggle."], | |
| [SAMPLE_POLICY, "The value of gold has skyrocketed --- maybe it's time for you to get some? "], | |
| ], | |
| inputs=[policy, prompt], | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=32).launch() | |