chatgpt-oasis / app.py
parthraninga's picture
Upload 10 files
95efa57 verified
raw
history blame
10.4 kB
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import torch
import torch.nn.functional as F
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import io
import numpy as np
from typing import List, Dict, Any
import logging
import os
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="ChatGPT Oasis Model Inference API",
description="FastAPI inference server for Oasis and ViT models deployed on Hugging Face Spaces with Docker",
version="1.0.0"
)
# Global variables to store loaded models
oasis_model = None
oasis_processor = None
vit_model = None
vit_processor = None
class InferenceRequest(BaseModel):
image: str # Base64 encoded image
model_name: str = "oasis500m" # Default to oasis model
class InferenceResponse(BaseModel):
predictions: List[Dict[str, Any]]
model_used: str
confidence_scores: List[float]
def load_models():
"""Load both models from local files"""
global oasis_model, oasis_processor, vit_model, vit_processor
try:
logger.info("Loading Oasis 500M model from local files...")
# Load Oasis model from local files
oasis_processor = AutoImageProcessor.from_pretrained("microsoft/oasis-500m")
oasis_model = AutoModelForImageClassification.from_pretrained(
"microsoft/oasis-500m",
local_files_only=False # Will download config but use local weights
)
# Load local weights if available
oasis_model_path = "/app/models/oasis500m.safetensors"
if os.path.exists(oasis_model_path):
logger.info("Loading Oasis weights from local file...")
from safetensors.torch import load_file
state_dict = load_file(oasis_model_path)
oasis_model.load_state_dict(state_dict, strict=False)
oasis_model.eval()
logger.info("Loading ViT-L-20 model from local files...")
# Load ViT model from local files
vit_processor = AutoImageProcessor.from_pretrained("google/vit-large-patch16-224")
vit_model = AutoModelForImageClassification.from_pretrained(
"google/vit-large-patch16-224",
local_files_only=False # Will download config but use local weights
)
# Load local weights if available
vit_model_path = "/app/models/vit-l-20.safetensors"
if os.path.exists(vit_model_path):
logger.info("Loading ViT weights from local file...")
from safetensors.torch import load_file
state_dict = load_file(vit_model_path)
vit_model.load_state_dict(state_dict, strict=False)
vit_model.eval()
logger.info("All models loaded successfully!")
except Exception as e:
logger.error(f"Error loading models: {e}")
raise e
@app.on_event("startup")
async def startup_event():
"""Load models when the application starts"""
load_models()
@app.get("/")
async def root():
"""Root endpoint with API information"""
return {
"message": "ChatGPT Oasis Model Inference API",
"version": "1.0.0",
"deployed_on": "Hugging Face Spaces (Docker)",
"available_models": ["oasis500m", "vit-l-20"],
"endpoints": {
"health": "/health",
"inference": "/inference",
"upload_inference": "/upload_inference",
"predict": "/predict"
},
"usage": {
"base64_inference": "POST /inference with JSON body containing 'image' (base64) and 'model_name'",
"file_upload": "POST /upload_inference with multipart form containing 'file' and optional 'model_name'",
"simple_predict": "POST /predict with file upload for quick inference"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
models_status = {
"oasis500m": oasis_model is not None,
"vit-l-20": vit_model is not None
}
# Check if model files exist
model_files = {
"oasis500m": os.path.exists("/app/models/oasis500m.safetensors"),
"vit-l-20": os.path.exists("/app/models/vit-l-20.safetensors")
}
return {
"status": "healthy",
"models_loaded": models_status,
"model_files_present": model_files,
"deployment": "huggingface-spaces-docker"
}
def process_image_with_model(image: Image.Image, model_name: str):
"""Process image with the specified model"""
if model_name == "oasis500m":
if oasis_model is None or oasis_processor is None:
raise HTTPException(status_code=500, detail="Oasis model not loaded")
inputs = oasis_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = oasis_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": oasis_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
elif model_name == "vit-l-20":
if vit_model is None or vit_processor is None:
raise HTTPException(status_code=500, detail="ViT model not loaded")
inputs = vit_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = vit_model(**inputs)
logits = outputs.logits
probabilities = F.softmax(logits, dim=-1)
# Get top predictions
top_probs, top_indices = torch.topk(probabilities, 5)
predictions = []
for i in range(top_indices.shape[1]):
pred = {
"label": vit_model.config.id2label[top_indices[0][i].item()],
"confidence": top_probs[0][i].item()
}
predictions.append(pred)
return predictions
else:
raise HTTPException(status_code=400, detail=f"Unknown model: {model_name}")
@app.post("/inference", response_model=InferenceResponse)
async def inference(request: InferenceRequest):
"""Inference endpoint using base64 encoded image"""
try:
import base64
# Decode base64 image
image_data = base64.b64decode(request.image)
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, request.model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=request.model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload_inference", response_model=InferenceResponse)
async def upload_inference(
file: UploadFile = File(...),
model_name: str = "oasis500m"
):
"""Inference endpoint using file upload"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and process image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with model
predictions = process_image_with_model(image, model_name)
# Extract confidence scores
confidence_scores = [pred["confidence"] for pred in predictions]
return InferenceResponse(
predictions=predictions,
model_used=model_name,
confidence_scores=confidence_scores
)
except Exception as e:
logger.error(f"Upload inference error: {e}")
raise HTTPException(status_code=500, detail=str(e))
@app.get("/models")
async def list_models():
"""List available models and their status"""
return {
"available_models": [
{
"name": "oasis500m",
"description": "Oasis 500M vision model",
"loaded": oasis_model is not None,
"file_present": os.path.exists("/app/models/oasis500m.safetensors")
},
{
"name": "vit-l-20",
"description": "Vision Transformer Large model",
"loaded": vit_model is not None,
"file_present": os.path.exists("/app/models/vit-l-20.safetensors")
}
]
}
# Hugging Face Spaces specific endpoint for Gradio compatibility
@app.post("/predict")
async def predict(file: UploadFile = File(...)):
"""Simple prediction endpoint for Hugging Face Spaces integration"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and process image
image_data = await file.read()
image = Image.open(io.BytesIO(image_data)).convert('RGB')
# Process with default model (oasis500m)
predictions = process_image_with_model(image, "oasis500m")
# Return simplified format for Gradio
return {
"predictions": predictions[:3], # Top 3 predictions
"model_used": "oasis500m"
}
except Exception as e:
logger.error(f"Predict error: {e}")
raise HTTPException(status_code=500, detail=str(e))