File size: 13,848 Bytes
a0a9007
6e2c6fa
 
 
ab0c591
6e2c6fa
a8b1c40
c11107a
a8b1c40
 
6e2c6fa
a8b1c40
a0a9007
6e2c6fa
a8b1c40
09dd649
a8b1c40
 
c11107a
6e2c6fa
a8b1c40
 
 
6e2c6fa
c11107a
 
 
1d7b167
 
 
 
 
 
 
 
 
 
 
 
 
c11107a
 
1d7b167
 
c11107a
 
 
 
1d7b167
c11107a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d7b167
c11107a
1d7b167
 
c11107a
 
 
 
 
 
 
 
1d7b167
c11107a
 
 
 
 
 
 
 
 
 
1d7b167
a8b1c40
1a17d9f
6e2c6fa
 
a8b1c40
6e2c6fa
a8b1c40
6e2c6fa
a8b1c40
 
 
6e2c6fa
 
 
a8b1c40
 
6e2c6fa
a8b1c40
 
 
6e2c6fa
 
 
a8b1c40
a5d07a8
c11107a
 
7c0a5ab
c11107a
6e2c6fa
 
 
7c0a5ab
 
c11107a
 
d3e8957
c11107a
d3e8957
 
 
 
 
1c3a854
 
 
 
 
 
 
 
 
323e41c
 
6e2c6fa
 
323e41c
6e2c6fa
 
 
 
c11107a
 
6e2c6fa
 
 
 
 
 
 
 
 
 
a0a9007
6e2c6fa
 
 
 
 
 
 
a8b1c40
6e2c6fa
a8b1c40
6e2c6fa
c11107a
6e2c6fa
c11107a
 
 
 
 
1c3a854
 
6e2c6fa
 
 
a0a9007
6e2c6fa
 
 
a0a9007
c11107a
6e2c6fa
 
c11107a
d2cfb56
 
6e2c6fa
 
 
 
 
 
 
 
 
 
a0a9007
a8b1c40
6e2c6fa
 
 
 
 
 
a8b1c40
6e2c6fa
a8b1c40
6e2c6fa
c11107a
6e2c6fa
c11107a
 
 
 
 
1c3a854
 
a8b1c40
6e2c6fa
c947ff2
a8b1c40
6e2c6fa
 
466e3e5
 
c11107a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e2c6fa
d418457
a8b1c40
c11107a
 
 
a8b1c40
c947ff2
ab0c591
 
 
 
c11107a
ab0c591
6e2c6fa
 
c11107a
6e2c6fa
 
d3e8957
 
 
 
6e2c6fa
 
 
 
 
 
 
 
 
 
c11107a
 
6e2c6fa
c11107a
 
6e2c6fa
 
 
 
1d7b167
c11107a
6e2c6fa
c11107a
6e2c6fa
 
 
1a17d9f
c11107a
 
 
6e2c6fa
1d7b167
1a17d9f
c11107a
 
 
6e2c6fa
 
 
 
 
 
 
c11107a
 
1a17d9f
c11107a
 
6e2c6fa
 
1c3a854
6e2c6fa
c11107a
d3e8957
 
6e2c6fa
 
 
 
 
 
 
 
 
 
09dd649
a8b1c40
c11107a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from typing import Iterable

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    Qwen3VLForConditionalGeneration,
    AutoTokenizer,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)


class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Qwen2.5-VL-7B-Instruct
MODEL_ID_M = "Qwen/Qwen2.5-VL-7B-Instruct"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen2.5-VL-3B-Instruct
MODEL_ID_X = "Qwen/Qwen2.5-VL-3B-Instruct"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen3-VL-4B-Instruct
MODEL_ID_Q = "Qwen/Qwen3-VL-4B-Instruct"
processor_q = AutoProcessor.from_pretrained(MODEL_ID_Q, trust_remote_code=True)
model_q = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Q,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen3-VL-8B-Instruct
MODEL_ID_Y = "Qwen/Qwen3-VL-8B-Instruct"
processor_y = AutoProcessor.from_pretrained(MODEL_ID_Y, trust_remote_code=True)
model_y = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_Y,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

# Load Qwen3-VL-4B-Thinking
MODEL_ID_T = "Qwen/Qwen3-VL-4B-Thinking"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen3VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to(device).eval()

def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Use a maximum of 10 frames to avoid excessive memory usage
    frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "Qwen2.5-VL-7B-Instruct":
        processor, model = processor_m, model_m
    elif model_name == "Qwen2.5-VL-3B-Instruct":
        processor, model = processor_x, model_x
    elif model_name == "Qwen3-VL-4B-Instruct":
        processor, model = processor_q, model_q
    elif model_name == "Qwen3-VL-8B-Instruct":
        processor, model = processor_y, model_y
    elif model_name == "Qwen3-VL-4B-Thinking":
        processor, model = processor_t, model_t
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=[image], return_tensors="pt", padding=True,
        truncation=True, 
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "Qwen2.5-VL-7B-Instruct":
        processor, model = processor_m, model_m
    elif model_name == "Qwen2.5-VL-3B-Instruct":
        processor, model = processor_x, model_x
    elif model_name == "Qwen3-VL-4B-Instruct":
        processor, model = processor_q, model_q
    elif model_name == "Qwen3-VL-8B-Instruct":
        processor, model = processor_y, model_y
    elif model_name == "Qwen3-VL-4B-Thinking":
        processor, model = processor_t, model_t
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames_with_ts = downsample_video(video_path)
    if not frames_with_ts:
        yield "Could not process video.", "Could not process video."
        return

    messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
    images_for_processor = []
    for frame, timestamp in frames_with_ts:
        messages[0]["content"].append({"type": "image"})
        images_for_processor.append(frame)

    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full], images=images_for_processor, return_tensors="pt", padding=True,
        truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH
    ).to(device)
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs, "streamer": streamer, "max_new_tokens": max_new_tokens,
        "do_sample": True, "temperature": temperature, "top_p": top_p,
        "top_k": top_k, "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer


# Define examples for image and video inference
image_examples = [
    ["Explain the content in detail.", "images/D.jpg"],
    ["Explain the content (ocr).", "images/O.jpg"],
    ["What is the core meaning of the poem?", "images/S.jpg"],
    ["Provide a detailed caption for the image.", "images/A.jpg"],
    ["Explain the pie-chart in detail.", "images/2.jpg"],
    ["Jsonify Data.", "images/1.jpg"],
]

video_examples = [
    ["Explain the ad in detail", "videos/1.mp4"],
    ["Identify the main actions in the video", "videos/2.mp4"],
]

css = """
#main-title h1 {
    font-size: 2.3em !important;
}
#output-title h2 {
    font-size: 2.1em !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    gr.Markdown("# **Qwen3-VL-Outpost**", elem_id="main-title")
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Upload Image", height=290)
                    image_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
                    
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Upload Video", height=290)
                    video_submit = gr.Button("Submit", variant="primary")
                    gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
                    
            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
                
        with gr.Column(scale=3):
            gr.Markdown("## Output", elem_id="output-title")
            output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
            with gr.Accordion("(Result.md)", open=False):
                markdown_output = gr.Markdown()
                
            model_choice = gr.Radio(
                choices=["Qwen3-VL-4B-Instruct", "Qwen3-VL-8B-Instruct", "Qwen3-VL-4B-Thinking", "Qwen2.5-VL-3B-Instruct", "Qwen2.5-VL-7B-Instruct"],
                label="Select Model",
                value="Qwen3-VL-4B-Instruct"
            )

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=[output, markdown_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)