Spaces:
Sleeping
Sleeping
File size: 7,186 Bytes
4e09337 92717ee 4ebc629 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 4ebc629 4e09337 d2a27fd 4e09337 92717ee d2a27fd 4e09337 d2a27fd 4e09337 92717ee 4e09337 d2a27fd 92717ee 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 d2a27fd 4e09337 92717ee 4e09337 d2a27fd 4e09337 92717ee 4e09337 d2a27fd 4e09337 92717ee 4e09337 92717ee 4e09337 4ebc629 4e09337 4ebc629 4e09337 4ebc629 4e09337 92717ee 4e09337 92717ee 4e09337 d2a27fd 4e09337 92717ee 4e09337 92717ee d2a27fd 4e09337 92717ee 4e09337 d2a27fd 92717ee 4e09337 d2a27fd 92717ee d2a27fd 4e09337 d2a27fd 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 92717ee 4e09337 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# ---- Flags ----
run_api = False
SSD_1B = False
# ---- Standard imports ----
import os
import subprocess
import numpy as np
from IPython.display import clear_output
# ---- Minimal, deterministic env bootstrap (optional) ----
# Prefer pinning in requirements.txt instead of installing here.
def check_environment():
try:
import torch # noqa: F401
print("Environment is already installed.")
except ImportError:
print("Environment not found. Installing pinned dependencies...")
# Strongly prefer doing this via requirements.txt at build time.
os.system("pip install --upgrade pip")
os.system("pip install diffusers==0.30.0 transformers>=4.41.0 accelerate>=0.31.0 huggingface_hub>=0.23.4 safetensors>=0.4.2 gradio==4.37.1 python-dotenv")
clear_output()
print("Environment installed successfully.")
check_environment()
# ---- App imports (safe after environment check) ----
import torch
import gradio as gr
from PIL import Image
from diffusers import UNet2DConditionModel, DiffusionPipeline, LCMScheduler
# Optional: only imported if SSD_1B=True
# from diffusers import AutoPipelineForText2Image
# ---- Config / constants ----
current_dir = os.getcwd()
cache_path = os.path.join(current_dir, "cache")
os.makedirs(cache_path, exist_ok=True)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
SECRET_TOKEN = os.getenv("SECRET_TOKEN", "default_secret")
# ---- GPU / NVML detection (robust) ----
def print_nvidia_smi():
try:
proc = subprocess.run(["nvidia-smi"], capture_output=True, text=True)
if proc.returncode == 0:
print(proc.stdout)
else:
# Show the stderr to aid debugging, but don't trust it for logic
print(proc.stderr or "nvidia-smi returned a non-zero exit code.")
except FileNotFoundError:
print("nvidia-smi not found on PATH.")
print_nvidia_smi()
is_gpu = torch.cuda.is_available()
print(f"CUDA available: {is_gpu}")
# dtype & device
dtype = torch.float16 if is_gpu else torch.float32
device = torch.device("cuda") if is_gpu else torch.device("cpu")
# Optional: fewer surprises when CUDA is flaky
if not is_gpu:
# Avoid cuda-related env flags when no GPU
os.environ.pop("CUDA_LAUNCH_BLOCKING", None)
# ---- Pipeline setup ----
if not SSD_1B:
# SDXL base + LCM UNet
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-sdxl",
torch_dtype=dtype,
variant="fp16" if is_gpu else None,
cache_dir=cache_path,
)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
unet=unet,
torch_dtype=dtype,
variant="fp16" if is_gpu else None,
cache_dir=cache_path,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
else:
# SSD-1B + LCM LoRA
from diffusers import AutoPipelineForText2Image # local import
pipe = AutoPipelineForText2Image.from_pretrained(
"segmind/SSD-1B",
torch_dtype=dtype,
variant="fp16" if is_gpu else None,
cache_dir=cache_path,
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
pipe.load_lora_weights("latent-consistency/lcm-lora-ssd-1b")
pipe.fuse_lora()
# ---- Core generate function ----
def generate(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 0.0,
num_inference_steps: int = 4,
secret_token: str = "",
) -> Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error("Invalid secret token. Set SECRET_TOKEN on the server or pass the correct token.")
# Make sure sizes are sane on CPU
width = int(np.clip(width, 256, MAX_IMAGE_SIZE))
height = int(np.clip(height, 256, MAX_IMAGE_SIZE))
generator = torch.Generator(device=device)
if seed is not None:
generator = generator.manual_seed(int(seed))
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type="pil",
)
return out.images[0]
clear_output()
# ---- Optional notebook helper ----
def generate_image(prompt="A scenic watercolor landscape, mountains at dawn"):
img = generate(
prompt=prompt,
negative_prompt="",
seed=0,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
secret_token=SECRET_TOKEN,
)
from IPython.display import display
display(img)
# ---- UI ----
if not run_api:
secret_token = gr.Textbox(
label="Secret Token",
placeholder="Enter your secret token",
type="password",
)
prompt = gr.Textbox(
label="Prompt",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=2,
placeholder="Enter a negative prompt (optional)",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
iface = gr.Interface(
fn=generate,
inputs=[prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token],
outputs=gr.Image(label="Result"),
title="Image Generator (LCM)",
description="Fast SDXL/SSD-1B image generation with LCM. Uses CPU if CUDA is unavailable.",
)
iface.launch()
if run_api:
with gr.Blocks() as demo:
gr.Markdown(
"### REST API for LCM Text-to-Image\n"
"Use the `/run` endpoint programmatically with your secret."
)
secret_token = gr.Textbox(label="Secret Token", type="password")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0, maximum=2, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=8, step=1, value=4)
inputs = [prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps, secret_token]
prompt.submit(fn=generate, inputs=inputs, outputs=gr.Image(), api_name="run")
demo.queue(max_size=32).launch(debug=False)
|