Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,998 Bytes
cfb37bf fb3185e 2c99aea c662fe8 2c99aea c79571d 1ec4316 f094617 c79571d fb3185e cfb37bf c79571d c662fe8 c79571d 490767e c79571d 490767e c662fe8 fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d fb3185e c79571d 2c99aea fb3185e c79571d 2c99aea c79571d 0dfe1bf 2c99aea fb3185e 0dfe1bf 2c99aea 0dfe1bf 2c99aea 0dfe1bf c79571d d6e55c9 2c99aea 0dfe1bf 2c99aea 0dfe1bf 2c99aea fb3185e c79571d 2c99aea c79571d 2c99aea 466f0d3 0dfe1bf 2c99aea c79571d 2c99aea c79571d 2c99aea 0dfe1bf 2c99aea 0dfe1bf c79571d 2c99aea 0dfe1bf 133333c c79571d 2c99aea c79571d 0dfe1bf 2c99aea 0dfe1bf 2c99aea 0dfe1bf 2c99aea c79571d 2c99aea c79571d fb3185e 2c99aea c662fe8 c79571d c662fe8 f31f6ca c79571d f31f6ca c662fe8 c79571d 2c99aea 91e2f1d 0dfe1bf 91e2f1d 0dfe1bf c79571d 2c99aea fb3185e 2c99aea 133333c fb3185e c662fe8 2c99aea c662fe8 fb3185e a987d91 c662fe8 fb3185e c79571d fb3185e 2c99aea 0dfe1bf c79571d 2c99aea c79571d 2c99aea c79571d 2c99aea c79571d 0dfe1bf 2c99aea 0dfe1bf 2c99aea 0dfe1bf 2c99aea 0dfe1bf c662fe8 f31f6ca c79571d 2c99aea c79571d 2c99aea c79571d 2c99aea c79571d 2c99aea c79571d 2c99aea c79571d 133333c c79571d 2c99aea 0dfe1bf 2c99aea c6b50f6 2c99aea c6b50f6 2c99aea c6b50f6 c79571d 2c99aea 466f0d3 2c99aea 466f0d3 c6b50f6 c79571d 2c99aea c79571d 2c99aea fb3185e c6b50f6 2c99aea c6b50f6 0dfe1bf 2c99aea c6b50f6 fb3185e c79571d fb3185e 2c99aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal, Tuple, Union
from PIL import Image
import requests
from io import BytesIO
import spaces
from pathlib import Path
from visualizer import htrflow_visualizer
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline
DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = [
"letter_english",
"letter_swedish",
"spread_english",
"spread_swedish",
]
FILE_CHOICES = ["txt", "alto", "page", "json"]
FormatChoices = Literal[
"letter_english", "letter_swedish", "spread_english", "spread_swedish"
]
FileChoices = Literal["txt", "alto", "page", "json"]
PIPELINE_CONFIGS = {
"letter_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"letter_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "OrderLines"},
]
},
"spread_english": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {"model": "microsoft/trocr-base-handwritten"},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
"spread_swedish": {
"steps": [
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
"generation_settings": {"batch_size": 4},
},
},
{
"step": "Segmentation",
"settings": {
"model": "yolo",
"model_settings": {
"model": "Riksarkivet/yolov9-lines-within-regions-1"
},
"generation_settings": {"batch_size": 8},
},
},
{
"step": "TextRecognition",
"settings": {
"model": "TrOCR",
"model_settings": {
"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
},
"generation_settings": {"batch_size": 16},
},
},
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
]
},
}
def handle_image_input(image_path: Union[str, None], progress: gr.Progress = None) -> str:
"""
Handle image input from various sources (local file, URL, or uploaded file).
Args:
image_path: Path to image file or URL
progress: Progress tracker for UI updates
Returns:
Local file path to the image
"""
if not image_path:
raise ValueError("No image provided. Please upload an image or provide a URL.")
if progress:
progress(0.1, desc="Processing image input...")
# If it's a URL, download the image
if isinstance(image_path, str) and (image_path.startswith("http://") or image_path.startswith("https://")):
try:
if progress:
progress(0.2, desc="Downloading image from URL...")
response = requests.get(image_path, timeout=30)
response.raise_for_status()
# Save to temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
tmp_file.write(response.content)
image_path = tmp_file.name
# Verify it's a valid image
try:
img = Image.open(image_path)
img.verify()
except Exception as e:
os.unlink(image_path)
raise ValueError(f"Downloaded file is not a valid image: {str(e)}")
except requests.RequestException as e:
raise ValueError(f"Failed to download image from URL: {str(e)}")
# Verify the file exists
if not os.path.exists(image_path):
raise ValueError(f"Image file not found: {image_path}")
return image_path
@spaces.GPU
def _process_htr_pipeline(
image_path: str,
document_type: FormatChoices,
custom_settings: Optional[str] = None,
progress: gr.Progress = None
) -> Collection:
"""Process HTR pipeline and return the processed collection."""
# Handle image input
image_path = handle_image_input(image_path, progress)
if custom_settings:
try:
config = json.loads(custom_settings)
except json.JSONDecodeError:
raise ValueError("Invalid JSON in custom_settings parameter. Please check your JSON syntax.")
else:
config = PIPELINE_CONFIGS[document_type]
if progress:
progress(0.3, desc="Initializing HTR pipeline...")
collection = Collection([image_path])
pipeline = Pipeline.from_config(config)
try:
# Track pipeline steps
total_steps = len(config.get("steps", []))
if progress:
progress(0.4, desc=f"Running HTR pipeline with {total_steps} steps...")
# Run the pipeline (we could add more granular progress here if the pipeline supports it)
processed_collection = pipeline.run(collection)
if progress:
progress(0.9, desc="Pipeline complete, preparing results...")
return processed_collection
except Exception as pipeline_error:
raise RuntimeError(f"Pipeline execution failed: {str(pipeline_error)}")
finally:
# Clean up temporary file if it was downloaded
if image_path and image_path.startswith(tempfile.gettempdir()):
try:
os.unlink(image_path)
except:
pass
def htr_text(
image_path: str,
document_type: FormatChoices = "letter_swedish",
custom_settings: Optional[str] = None,
progress: gr.Progress = gr.Progress()
) -> str:
"""
Extract text from handwritten documents using HTR (Handwritten Text Recognition).
This tool processes historical handwritten documents and extracts the text content.
Supports various document layouts including letters and book spreads in English and Swedish.
Args:
image_path: Path to the document image file or URL to download from
document_type: Type of document layout - choose based on your document's structure and language
custom_settings: Optional JSON configuration for advanced pipeline customization
Returns:
Extracted text from the handwritten document
"""
try:
progress(0, desc="Starting HTR text extraction...")
processed_collection = _process_htr_pipeline(
image_path, document_type, custom_settings, progress
)
progress(0.95, desc="Extracting text from results...")
extracted_text = extract_text_from_collection(processed_collection)
progress(1.0, desc="Text extraction complete!")
return extracted_text
except ValueError as e:
return f"Input error: {str(e)}"
except Exception as e:
return f"HTR text extraction failed: {str(e)}"
def htrflow_file(
image_path: str,
document_type: FormatChoices = "letter_swedish",
output_format: FileChoices = DEFAULT_OUTPUT,
custom_settings: Optional[str] = None,
server_name: str = "https://gabriel-htrflow-mcp.hf.space",
progress: gr.Progress = gr.Progress()
) -> str:
"""
Process handwritten document and generate a formatted output file.
This tool performs HTR on a document and exports the results in various formats
suitable for digital archiving, further processing, or integration with other systems.
Args:
image_path: Path to the document image file or URL to download from
document_type: Type of document layout - affects segmentation and reading order
output_format: Desired output format (txt for plain text, alto/page for XML with coordinates, json for structured data)
custom_settings: Optional JSON configuration for advanced pipeline customization
server_name: Base URL of the server (used for generating download links)
Returns:
Path to the generated file for download
"""
try:
progress(0, desc="Starting HTR file processing...")
original_filename = Path(image_path).stem if image_path else "output"
processed_collection = _process_htr_pipeline(
image_path, document_type, custom_settings, progress
)
progress(0.92, desc=f"Generating {output_format.upper()} file...")
temp_dir = Path(tempfile.mkdtemp())
export_dir = temp_dir / output_format
processed_collection.save(directory=str(export_dir), serializer=output_format)
output_file_path = None
for root, _, files in os.walk(export_dir):
for file in files:
old_path = os.path.join(root, file)
file_ext = Path(file).suffix
new_filename = (
f"{original_filename}.{output_format}"
if not file_ext
else f"{original_filename}{file_ext}"
)
new_path = os.path.join(root, new_filename)
os.rename(old_path, new_path)
output_file_path = new_path
break
progress(1.0, desc="File generation complete!")
if output_file_path and os.path.exists(output_file_path):
return output_file_path
else:
return None
except ValueError as e:
# Create an error file with the error message
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"Error: {str(e)}")
error_file.close()
return error_file.name
except Exception as e:
# Create an error file with the error message
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"HTR file generation failed: {str(e)}")
error_file.close()
return error_file.name
def htrflow_visualizer_with_progress(
image_path: str,
htr_document_path: str,
server_name: str = "https://gabriel-htrflow-mcp.hf.space",
progress: gr.Progress = gr.Progress()
) -> str:
"""
Create a visualization of HTR results overlaid on the original document.
This tool generates an annotated image showing detected text regions, reading order,
and recognized text overlaid on the original document image. Useful for quality control
and understanding the HTR process.
Args:
image_path: Path to the original document image file or URL
htr_document_path: Path to the HTR output file (ALTO or PAGE XML format)
server_name: Base URL of the server (used for generating download links)
Returns:
Path to the generated visualization image for download
"""
try:
progress(0, desc="Starting visualization generation...")
# Handle image input
image_path = handle_image_input(image_path, progress)
progress(0.5, desc="Creating visualization...")
# Call the original visualizer function
result = htrflow_visualizer(image_path, htr_document_path, server_name)
progress(1.0, desc="Visualization complete!")
return result
except Exception as e:
# Create an error file
error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
error_file.write(f"Visualization failed: {str(e)}")
error_file.close()
return error_file.name
finally:
# Clean up temporary file if it was downloaded
if image_path and image_path.startswith(tempfile.gettempdir()):
try:
os.unlink(image_path)
except:
pass
def extract_text_from_collection(collection: Collection) -> str:
"""Extract and combine text from all nodes in the collection."""
text_lines = []
for page in collection.pages:
for node in page.traverse():
if hasattr(node, "text") and node.text:
text_lines.append(node.text)
return "\n".join(text_lines)
def create_htrflow_mcp_server():
# HTR Text extraction interface with improved API description
htr_text_interface = gr.Interface(
fn=htr_text,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(
choices=FORMAT_CHOICES,
value="letter_swedish",
label="Document Type",
info="Select the type that best matches your document's layout and language"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder='{"steps": [...]} - Leave empty for default settings',
value="",
lines=3
),
],
outputs=[gr.Textbox(label="Extracted Text", lines=15)],
title="Extract Text from Handwritten Documents",
description="Upload a handwritten document image to extract text using AI-powered HTR",
api_name="htr_text",
api_description="Extract text from handwritten historical documents using advanced HTR models. Supports letters and book spreads in English and Swedish.",
)
# HTR File generation interface
htrflow_file_interface = gr.Interface(
fn=htrflow_file,
inputs=[
gr.Image(type="filepath", label="Upload Image or Enter URL"),
gr.Dropdown(
choices=FORMAT_CHOICES,
value="letter_swedish",
label="Document Type",
info="Select the type that best matches your document's layout and language"
),
gr.Dropdown(
choices=FILE_CHOICES,
value=DEFAULT_OUTPUT,
label="Output Format",
info="ALTO/PAGE: XML with coordinates | JSON: Structured data | TXT: Plain text only"
),
gr.Textbox(
label="Custom Settings (JSON)",
placeholder='{"steps": [...]} - Leave empty for default settings',
value="",
lines=3
),
gr.Textbox(
label="Server Name",
value="https://gabriel-htrflow-mcp.hf.space",
placeholder="Server URL for download links",
visible=False # Hide this from UI but keep for API
),
],
outputs=[gr.File(label="Download HTR Output File")],
title="Generate HTR Output Files",
description="Process handwritten documents and export in various formats (XML, JSON, TXT)",
api_name="htrflow_file",
api_description="Process handwritten documents and generate formatted output files. Outputs can be in ALTO XML (with text coordinates), PAGE XML, JSON (structured data), or plain text format.",
)
# HTR Visualization interface
htrflow_viz = gr.Interface(
fn=htrflow_visualizer_with_progress,
inputs=[
gr.Image(type="filepath", label="Upload Original Image"),
gr.File(label="Upload ALTO/PAGE XML File", file_types=[".xml"]),
gr.Textbox(
label="Server Name",
value="https://gabriel-htrflow-mcp.hf.space",
placeholder="Server URL for download links",
visible=False # Hide this from UI but keep for API
),
],
outputs=gr.File(label="Download Visualization Image"),
title="Visualize HTR Results",
description="Create an annotated image showing detected text regions and recognized text",
api_name="htrflow_visualizer",
api_description="Generate a visualization image showing HTR results overlaid on the original document. Shows detected text regions, reading order, and recognized text for quality control.",
)
# Create tabbed interface with better organization
demo = gr.TabbedInterface(
[htr_text_interface, htrflow_file_interface, htrflow_viz],
["Extract Text", "Generate Files", "Visualize Results"],
title="🖋️ HTRflow - Handwritten Text Recognition",
analytics_enabled=False,
)
return demo
if __name__ == "__main__":
demo = create_htrflow_mcp_server()
demo.launch(
mcp_server=True,
share=False,
debug=False,
show_api=True, # Ensure API is visible
favicon_path=None,
) |