File size: 18,998 Bytes
cfb37bf
fb3185e
 
 
2c99aea
c662fe8
2c99aea
 
c79571d
1ec4316
f094617
c79571d
fb3185e
 
cfb37bf
c79571d
c662fe8
c79571d
 
 
 
 
 
490767e
 
c79571d
 
 
490767e
c662fe8
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
c79571d
 
 
fb3185e
 
 
 
 
 
 
 
c79571d
2c99aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3185e
c79571d
2c99aea
 
 
 
c79571d
0dfe1bf
2c99aea
 
 
fb3185e
0dfe1bf
 
 
 
2c99aea
0dfe1bf
 
 
2c99aea
 
 
0dfe1bf
 
c79571d
d6e55c9
2c99aea
 
 
 
 
 
 
0dfe1bf
2c99aea
 
 
 
0dfe1bf
 
 
2c99aea
 
 
 
 
 
 
fb3185e
c79571d
 
 
 
 
2c99aea
c79571d
2c99aea
 
 
 
 
 
 
 
 
 
 
 
 
466f0d3
0dfe1bf
2c99aea
 
c79571d
2c99aea
c79571d
2c99aea
 
0dfe1bf
2c99aea
 
0dfe1bf
c79571d
2c99aea
 
0dfe1bf
 
133333c
c79571d
 
 
 
 
 
 
2c99aea
c79571d
0dfe1bf
2c99aea
 
 
 
 
 
 
 
 
 
 
 
0dfe1bf
2c99aea
0dfe1bf
 
2c99aea
 
 
c79571d
 
2c99aea
c79571d
fb3185e
2c99aea
 
c662fe8
 
 
c79571d
c662fe8
 
 
f31f6ca
 
c79571d
 
 
 
 
f31f6ca
 
 
c662fe8
c79571d
2c99aea
 
91e2f1d
0dfe1bf
91e2f1d
0dfe1bf
c79571d
2c99aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3185e
2c99aea
 
 
 
 
 
 
 
 
 
 
 
133333c
fb3185e
c662fe8
2c99aea
c662fe8
fb3185e
 
a987d91
c662fe8
 
fb3185e
c79571d
fb3185e
2c99aea
0dfe1bf
 
 
 
c79571d
2c99aea
 
 
 
c79571d
 
 
2c99aea
c79571d
2c99aea
c79571d
0dfe1bf
2c99aea
 
 
0dfe1bf
2c99aea
0dfe1bf
 
2c99aea
0dfe1bf
 
c662fe8
f31f6ca
c79571d
2c99aea
 
 
 
c79571d
 
2c99aea
 
 
 
c79571d
 
 
2c99aea
c79571d
2c99aea
c79571d
 
 
 
 
2c99aea
c79571d
133333c
c79571d
2c99aea
 
0dfe1bf
2c99aea
c6b50f6
 
2c99aea
c6b50f6
2c99aea
c6b50f6
c79571d
2c99aea
466f0d3
 
 
 
2c99aea
466f0d3
c6b50f6
c79571d
2c99aea
 
c79571d
2c99aea
fb3185e
c6b50f6
2c99aea
c6b50f6
0dfe1bf
2c99aea
 
 
c6b50f6
 
fb3185e
 
c79571d
fb3185e
 
2c99aea
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import gradio as gr
import json
import tempfile
import os
from typing import List, Optional, Literal, Tuple, Union
from PIL import Image
import requests
from io import BytesIO

import spaces
from pathlib import Path
from visualizer import htrflow_visualizer
from htrflow.volume.volume import Collection
from htrflow.pipeline.pipeline import Pipeline


DEFAULT_OUTPUT = "alto"
FORMAT_CHOICES = [
    "letter_english",
    "letter_swedish",
    "spread_english",
    "spread_swedish",
]
FILE_CHOICES = ["txt", "alto", "page", "json"]

FormatChoices = Literal[
    "letter_english", "letter_swedish", "spread_english", "spread_swedish"
]
FileChoices = Literal["txt", "alto", "page", "json"]

PIPELINE_CONFIGS = {
    "letter_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "letter_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {
                        "model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
                    },
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "OrderLines"},
        ]
    },
    "spread_english": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {"model": "microsoft/trocr-base-handwritten"},
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
    "spread_swedish": {
        "steps": [
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {"model": "Riksarkivet/yolov9-regions-1"},
                    "generation_settings": {"batch_size": 4},
                },
            },
            {
                "step": "Segmentation",
                "settings": {
                    "model": "yolo",
                    "model_settings": {
                        "model": "Riksarkivet/yolov9-lines-within-regions-1"
                    },
                    "generation_settings": {"batch_size": 8},
                },
            },
            {
                "step": "TextRecognition",
                "settings": {
                    "model": "TrOCR",
                    "model_settings": {
                        "model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"
                    },
                    "generation_settings": {"batch_size": 16},
                },
            },
            {"step": "ReadingOrderMarginalia", "settings": {"two_page": True}},
        ]
    },
}


def handle_image_input(image_path: Union[str, None], progress: gr.Progress = None) -> str:
    """
    Handle image input from various sources (local file, URL, or uploaded file).
    
    Args:
        image_path: Path to image file or URL
        progress: Progress tracker for UI updates
        
    Returns:
        Local file path to the image
    """
    if not image_path:
        raise ValueError("No image provided. Please upload an image or provide a URL.")
    
    if progress:
        progress(0.1, desc="Processing image input...")
    
    # If it's a URL, download the image
    if isinstance(image_path, str) and (image_path.startswith("http://") or image_path.startswith("https://")):
        try:
            if progress:
                progress(0.2, desc="Downloading image from URL...")
            response = requests.get(image_path, timeout=30)
            response.raise_for_status()
            
            # Save to temporary file
            with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp_file:
                tmp_file.write(response.content)
                image_path = tmp_file.name
                
            # Verify it's a valid image
            try:
                img = Image.open(image_path)
                img.verify()
            except Exception as e:
                os.unlink(image_path)
                raise ValueError(f"Downloaded file is not a valid image: {str(e)}")
                
        except requests.RequestException as e:
            raise ValueError(f"Failed to download image from URL: {str(e)}")
    
    # Verify the file exists
    if not os.path.exists(image_path):
        raise ValueError(f"Image file not found: {image_path}")
    
    return image_path


@spaces.GPU
def _process_htr_pipeline(
    image_path: str, 
    document_type: FormatChoices, 
    custom_settings: Optional[str] = None,
    progress: gr.Progress = None
) -> Collection:
    """Process HTR pipeline and return the processed collection."""
    
    # Handle image input
    image_path = handle_image_input(image_path, progress)

    if custom_settings:
        try:
            config = json.loads(custom_settings)
        except json.JSONDecodeError:
            raise ValueError("Invalid JSON in custom_settings parameter. Please check your JSON syntax.")
    else:
        config = PIPELINE_CONFIGS[document_type]

    if progress:
        progress(0.3, desc="Initializing HTR pipeline...")
    
    collection = Collection([image_path])
    pipeline = Pipeline.from_config(config)

    try:
        # Track pipeline steps
        total_steps = len(config.get("steps", []))
        
        if progress:
            progress(0.4, desc=f"Running HTR pipeline with {total_steps} steps...")
        
        # Run the pipeline (we could add more granular progress here if the pipeline supports it)
        processed_collection = pipeline.run(collection)
        
        if progress:
            progress(0.9, desc="Pipeline complete, preparing results...")
        
        return processed_collection
    except Exception as pipeline_error:
        raise RuntimeError(f"Pipeline execution failed: {str(pipeline_error)}")
    finally:
        # Clean up temporary file if it was downloaded
        if image_path and image_path.startswith(tempfile.gettempdir()):
            try:
                os.unlink(image_path)
            except:
                pass


def htr_text(
    image_path: str,
    document_type: FormatChoices = "letter_swedish",
    custom_settings: Optional[str] = None,
    progress: gr.Progress = gr.Progress()
) -> str:
    """
    Extract text from handwritten documents using HTR (Handwritten Text Recognition).
    
    This tool processes historical handwritten documents and extracts the text content.
    Supports various document layouts including letters and book spreads in English and Swedish.
    
    Args:
        image_path: Path to the document image file or URL to download from
        document_type: Type of document layout - choose based on your document's structure and language
        custom_settings: Optional JSON configuration for advanced pipeline customization
        
    Returns:
        Extracted text from the handwritten document
    """
    try:
        progress(0, desc="Starting HTR text extraction...")
        
        processed_collection = _process_htr_pipeline(
            image_path, document_type, custom_settings, progress
        )
        
        progress(0.95, desc="Extracting text from results...")
        extracted_text = extract_text_from_collection(processed_collection)
        
        progress(1.0, desc="Text extraction complete!")
        return extracted_text

    except ValueError as e:
        return f"Input error: {str(e)}"
    except Exception as e:
        return f"HTR text extraction failed: {str(e)}"


def htrflow_file(
    image_path: str,
    document_type: FormatChoices = "letter_swedish",
    output_format: FileChoices = DEFAULT_OUTPUT,
    custom_settings: Optional[str] = None,
    server_name: str = "https://gabriel-htrflow-mcp.hf.space",
    progress: gr.Progress = gr.Progress()
) -> str:
    """
    Process handwritten document and generate a formatted output file.
    
    This tool performs HTR on a document and exports the results in various formats
    suitable for digital archiving, further processing, or integration with other systems.
    
    Args:
        image_path: Path to the document image file or URL to download from
        document_type: Type of document layout - affects segmentation and reading order
        output_format: Desired output format (txt for plain text, alto/page for XML with coordinates, json for structured data)
        custom_settings: Optional JSON configuration for advanced pipeline customization
        server_name: Base URL of the server (used for generating download links)
        
    Returns:
        Path to the generated file for download
    """
    try:
        progress(0, desc="Starting HTR file processing...")
        
        original_filename = Path(image_path).stem if image_path else "output"

        processed_collection = _process_htr_pipeline(
            image_path, document_type, custom_settings, progress
        )

        progress(0.92, desc=f"Generating {output_format.upper()} file...")
        
        temp_dir = Path(tempfile.mkdtemp())
        export_dir = temp_dir / output_format
        processed_collection.save(directory=str(export_dir), serializer=output_format)

        output_file_path = None
        for root, _, files in os.walk(export_dir):
            for file in files:
                old_path = os.path.join(root, file)
                file_ext = Path(file).suffix
                new_filename = (
                    f"{original_filename}.{output_format}"
                    if not file_ext
                    else f"{original_filename}{file_ext}"
                )
                new_path = os.path.join(root, new_filename)
                os.rename(old_path, new_path)
                output_file_path = new_path
                break

        progress(1.0, desc="File generation complete!")
        
        if output_file_path and os.path.exists(output_file_path):
            return output_file_path
        else:
            return None

    except ValueError as e:
        # Create an error file with the error message
        error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
        error_file.write(f"Error: {str(e)}")
        error_file.close()
        return error_file.name
    except Exception as e:
        # Create an error file with the error message
        error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
        error_file.write(f"HTR file generation failed: {str(e)}")
        error_file.close()
        return error_file.name


def htrflow_visualizer_with_progress(
    image_path: str,
    htr_document_path: str,
    server_name: str = "https://gabriel-htrflow-mcp.hf.space",
    progress: gr.Progress = gr.Progress()
) -> str:
    """
    Create a visualization of HTR results overlaid on the original document.
    
    This tool generates an annotated image showing detected text regions, reading order,
    and recognized text overlaid on the original document image. Useful for quality control
    and understanding the HTR process.
    
    Args:
        image_path: Path to the original document image file or URL
        htr_document_path: Path to the HTR output file (ALTO or PAGE XML format)
        server_name: Base URL of the server (used for generating download links)
        
    Returns:
        Path to the generated visualization image for download
    """
    try:
        progress(0, desc="Starting visualization generation...")
        
        # Handle image input
        image_path = handle_image_input(image_path, progress)
        
        progress(0.5, desc="Creating visualization...")
        
        # Call the original visualizer function
        result = htrflow_visualizer(image_path, htr_document_path, server_name)
        
        progress(1.0, desc="Visualization complete!")
        
        return result
    except Exception as e:
        # Create an error file
        error_file = tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.txt')
        error_file.write(f"Visualization failed: {str(e)}")
        error_file.close()
        return error_file.name
    finally:
        # Clean up temporary file if it was downloaded
        if image_path and image_path.startswith(tempfile.gettempdir()):
            try:
                os.unlink(image_path)
            except:
                pass


def extract_text_from_collection(collection: Collection) -> str:
    """Extract and combine text from all nodes in the collection."""
    text_lines = []
    for page in collection.pages:
        for node in page.traverse():
            if hasattr(node, "text") and node.text:
                text_lines.append(node.text)
    return "\n".join(text_lines)


def create_htrflow_mcp_server():
    # HTR Text extraction interface with improved API description
    htr_text_interface = gr.Interface(
        fn=htr_text,
        inputs=[
            gr.Image(type="filepath", label="Upload Image or Enter URL"),
            gr.Dropdown(
                choices=FORMAT_CHOICES, 
                value="letter_swedish", 
                label="Document Type",
                info="Select the type that best matches your document's layout and language"
            ),
            gr.Textbox(
                label="Custom Settings (JSON)",
                placeholder='{"steps": [...]} - Leave empty for default settings',
                value="",
                lines=3
            ),
        ],
        outputs=[gr.Textbox(label="Extracted Text", lines=15)],
        title="Extract Text from Handwritten Documents",
        description="Upload a handwritten document image to extract text using AI-powered HTR",
        api_name="htr_text",
        api_description="Extract text from handwritten historical documents using advanced HTR models. Supports letters and book spreads in English and Swedish.",
    )

    # HTR File generation interface
    htrflow_file_interface = gr.Interface(
        fn=htrflow_file,
        inputs=[
            gr.Image(type="filepath", label="Upload Image or Enter URL"),
            gr.Dropdown(
                choices=FORMAT_CHOICES, 
                value="letter_swedish", 
                label="Document Type",
                info="Select the type that best matches your document's layout and language"
            ),
            gr.Dropdown(
                choices=FILE_CHOICES, 
                value=DEFAULT_OUTPUT, 
                label="Output Format",
                info="ALTO/PAGE: XML with coordinates | JSON: Structured data | TXT: Plain text only"
            ),
            gr.Textbox(
                label="Custom Settings (JSON)",
                placeholder='{"steps": [...]} - Leave empty for default settings',
                value="",
                lines=3
            ),
            gr.Textbox(
                label="Server Name",
                value="https://gabriel-htrflow-mcp.hf.space",
                placeholder="Server URL for download links",
                visible=False  # Hide this from UI but keep for API
            ),
        ],
        outputs=[gr.File(label="Download HTR Output File")],
        title="Generate HTR Output Files",
        description="Process handwritten documents and export in various formats (XML, JSON, TXT)",
        api_name="htrflow_file",
        api_description="Process handwritten documents and generate formatted output files. Outputs can be in ALTO XML (with text coordinates), PAGE XML, JSON (structured data), or plain text format.",
    )

    # HTR Visualization interface
    htrflow_viz = gr.Interface(
        fn=htrflow_visualizer_with_progress,
        inputs=[
            gr.Image(type="filepath", label="Upload Original Image"),
            gr.File(label="Upload ALTO/PAGE XML File", file_types=[".xml"]),
            gr.Textbox(
                label="Server Name",
                value="https://gabriel-htrflow-mcp.hf.space",
                placeholder="Server URL for download links",
                visible=False  # Hide this from UI but keep for API
            ),
        ],
        outputs=gr.File(label="Download Visualization Image"),
        title="Visualize HTR Results",
        description="Create an annotated image showing detected text regions and recognized text",
        api_name="htrflow_visualizer",
        api_description="Generate a visualization image showing HTR results overlaid on the original document. Shows detected text regions, reading order, and recognized text for quality control.",
    )

    # Create tabbed interface with better organization
    demo = gr.TabbedInterface(
        [htr_text_interface, htrflow_file_interface, htrflow_viz],
        ["Extract Text", "Generate Files", "Visualize Results"],
        title="🖋️ HTRflow - Handwritten Text Recognition",
        analytics_enabled=False,
    )

    return demo


if __name__ == "__main__":
    demo = create_htrflow_mcp_server()
    demo.launch(
        mcp_server=True, 
        share=False, 
        debug=False,
        show_api=True,  # Ensure API is visible
        favicon_path=None,
    )