File size: 5,472 Bytes
c53d978
00eb76e
 
0fd97ae
4f2bd66
00eb76e
c53d978
00eb76e
 
 
 
 
 
07f9cb7
00eb76e
 
 
4f2bd66
00eb76e
4f2bd66
00eb76e
 
4f2bd66
00eb76e
4f2bd66
 
 
 
00eb76e
4f2bd66
 
 
00eb76e
4f2bd66
 
00eb76e
 
0fd97ae
4f2bd66
00eb76e
0fd97ae
 
00eb76e
0fd97ae
 
 
00eb76e
0fd97ae
 
00eb76e
0fd97ae
00eb76e
 
 
 
4f2bd66
00eb76e
 
 
 
0fd97ae
00eb76e
 
0fd97ae
00eb76e
0fd97ae
 
00eb76e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4efe09
0fd97ae
00eb76e
 
0fd97ae
00eb76e
4f2bd66
0fd97ae
 
4f2bd66
0fd97ae
c53d978
00eb76e
 
 
0fd97ae
00eb76e
 
0fd97ae
00eb76e
0fd97ae
c53d978
4f2bd66
0fd97ae
00eb76e
 
 
 
 
 
e4efe09
00eb76e
 
 
0fd97ae
 
 
00eb76e
 
 
 
4f2bd66
0fd97ae
00eb76e
 
0fd97ae
00eb76e
 
0fd97ae
00eb76e
 
0fd97ae
00eb76e
 
0fd97ae
00eb76e
 
e4efe09
00eb76e
 
4f2bd66
0fd97ae
00eb76e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
from sentence_transformers import SentenceTransformer
import numpy as np
from pypdf import PdfReader
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

# Global variables
chunks = []
embeddings = []
model = None
tokenizer = None
embed_model = None

def initialize_models():
    """Initialize models on startup"""
    global model, tokenizer, embed_model
    
    print("Loading models...")
    
    # Load embedding model
    embed_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    
    # Load language model
    model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,
        low_cpu_mem_usage=True
    )
    
    print("Models loaded successfully!")

def process_pdf(pdf_file):
    """Process PDF and create embeddings"""
    global chunks, embeddings, embed_model
    
    if pdf_file is None:
        return "❌ Please upload a PDF file!", None
    
    try:
        # Read PDF
        pdf_reader = PdfReader(pdf_file.name)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
        
        if not text.strip():
            return "❌ Could not extract text from PDF!", None
        
        # Split into chunks
        chunk_size = 1000
        overlap = 200
        chunks = []
        
        for i in range(0, len(text), chunk_size - overlap):
            chunk = text[i:i + chunk_size]
            if chunk.strip():
                chunks.append(chunk)
        
        # Create embeddings
        embeddings = embed_model.encode(chunks, show_progress_bar=False)
        
        return f"βœ… PDF processed! Created {len(chunks)} chunks. You can now ask questions!", None
        
    except Exception as e:
        return f"❌ Error: {str(e)}", None

def find_relevant_chunks(query, top_k=3):
    """Find most relevant chunks using cosine similarity"""
    global chunks, embeddings, embed_model
    
    if not chunks:
        return []
    
    query_embedding = embed_model.encode([query])[0]
    
    # Calculate cosine similarity
    similarities = np.dot(embeddings, query_embedding) / (
        np.linalg.norm(embeddings, axis=1) * np.linalg.norm(query_embedding)
    )
    
    # Get top k indices
    top_indices = np.argsort(similarities)[-top_k:][::-1]
    
    return [chunks[i] for i in top_indices]

def generate_response(question, context):
    """Generate response using the language model"""
    global model, tokenizer
    
    prompt = f"""<|system|>
You are a helpful assistant. Answer the question based on the provided context. Be concise and accurate.
</s>
<|user|>
Context: {context}

Question: {question}
</s>
<|assistant|>
"""
    
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=300,
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Extract only the assistant's response
    if "<|assistant|>" in response:
        response = response.split("<|assistant|>")[-1].strip()
    
    return response

def chat(message, history):
    """Handle chat"""
    global chunks
    
    if not chunks:
        return history + [[message, "⚠️ Please upload and process a PDF first!"]]
    
    if not message.strip():
        return history
    
    try:
        # Find relevant context
        relevant_chunks = find_relevant_chunks(message)
        context = "\n\n".join(relevant_chunks)
        
        # Generate response
        response = generate_response(message, context)
        
        return history + [[message, response]]
        
    except Exception as e:
        return history + [[message, f"❌ Error: {str(e)}"]]

def clear_all():
    """Clear everything"""
    global chunks, embeddings
    chunks = []
    embeddings = []
    return None, "Ready to process a new PDF"

# Create UI
with gr.Blocks(title="Chat with PDF") as demo:
    gr.Markdown("# πŸ“„ Chat with PDF - Simple Version")
    
    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(label="πŸ“Ž Upload PDF", file_types=[".pdf"])
            process_btn = gr.Button("πŸ”„ Process PDF", variant="primary")
            status = gr.Textbox(label="Status", lines=3)
            clear_all_btn = gr.Button("πŸ—‘οΈ Clear All")
            
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(label="πŸ’¬ Chat", height=400)
            msg = gr.Textbox(label="Question", placeholder="Ask about the PDF...")
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear Chat")
    
    # Events
    process_btn.click(process_pdf, [pdf_input], [status, chatbot])
    
    msg.submit(chat, [msg, chatbot], [chatbot]).then(lambda: "", None, [msg])
    send_btn.click(chat, [msg, chatbot], [chatbot]).then(lambda: "", None, [msg])
    
    clear_btn.click(lambda: None, None, [chatbot])
    clear_all_btn.click(clear_all, None, [chatbot, status])

# Initialize on startup
initialize_models()

if __name__ == "__main__":
    demo.launch()