File size: 8,732 Bytes
dd765b2
 
 
c53d978
00eb76e
 
0fd97ae
4f2bd66
dd765b2
 
c53d978
00eb76e
 
 
 
 
 
dd765b2
07f9cb7
00eb76e
dd765b2
00eb76e
4f2bd66
00eb76e
4f2bd66
dd765b2
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2bd66
 
 
00eb76e
dd765b2
 
4f2bd66
 
dd765b2
 
 
 
00eb76e
4f2bd66
dd765b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2bd66
dd765b2
 
0fd97ae
4f2bd66
00eb76e
0fd97ae
 
00eb76e
0fd97ae
 
 
00eb76e
0fd97ae
 
00eb76e
0fd97ae
dd765b2
4f2bd66
dd765b2
 
0fd97ae
dd765b2
 
 
 
 
 
 
 
0fd97ae
00eb76e
0fd97ae
 
dd765b2
00eb76e
 
dd765b2
 
00eb76e
 
dd765b2
00eb76e
 
dd765b2
 
 
 
 
 
00eb76e
dd765b2
 
 
 
00eb76e
 
 
 
 
 
 
dd765b2
00eb76e
 
dd765b2
 
00eb76e
 
dd765b2
 
00eb76e
dd765b2
 
 
 
 
 
00eb76e
dd765b2
00eb76e
 
 
dd765b2
00eb76e
 
 
dd765b2
 
 
00eb76e
 
 
 
dd765b2
 
 
 
 
 
00eb76e
 
e4efe09
0fd97ae
dd765b2
00eb76e
0fd97ae
00eb76e
4f2bd66
0fd97ae
 
4f2bd66
0fd97ae
c53d978
dd765b2
 
 
0fd97ae
00eb76e
 
0fd97ae
dd765b2
 
 
 
00eb76e
0fd97ae
c53d978
dd765b2
4f2bd66
0fd97ae
00eb76e
 
dd765b2
00eb76e
 
dd765b2
00eb76e
e4efe09
dd765b2
 
 
 
0fd97ae
 
 
dd765b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f2bd66
0fd97ae
dd765b2
 
 
 
 
 
 
 
 
 
0fd97ae
dd765b2
00eb76e
0fd97ae
00eb76e
dd765b2
 
 
 
 
0fd97ae
dd765b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fd97ae
00eb76e
 
e4efe09
00eb76e
 
4f2bd66
0fd97ae
dd765b2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '0'

import gradio as gr
from sentence_transformers import SentenceTransformer
import numpy as np
from pypdf import PdfReader
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import re

# Global variables
chunks = []
embeddings = []
model = None
tokenizer = None
embed_model = None
text_cache = ""

def initialize_models():
    """Initialize models on startup with optimizations"""
    global model, tokenizer, embed_model
    
    print("Loading models...")
    
    # Use smaller, faster embedding model
    embed_model = SentenceTransformer(
        'sentence-transformers/paraphrase-MiniLM-L3-v2',  # Faster, smaller model
        device='cpu'
    )
    
    # Use smaller, faster language model
    model_name = "microsoft/phi-1_5"  # Much faster than TinyLlama, better quality
    # Alternative: "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        trust_remote_code=True
    )
    
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,
        low_cpu_mem_usage=True,
        trust_remote_code=True
    )
    
    # Set padding token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    print("Models loaded successfully!")

def smart_chunk_text(text, chunk_size=500, overlap=100):
    """Smarter chunking that respects sentence boundaries"""
    # Split into sentences
    sentences = re.split(r'[.!?]+', text)
    chunks = []
    current_chunk = ""
    
    for sentence in sentences:
        sentence = sentence.strip()
        if not sentence:
            continue
            
        # If adding this sentence exceeds chunk size, save current chunk
        if len(current_chunk) + len(sentence) > chunk_size and current_chunk:
            chunks.append(current_chunk)
            # Start new chunk with overlap
            words = current_chunk.split()
            current_chunk = " ".join(words[-20:]) + " " + sentence
        else:
            current_chunk += " " + sentence
    
    # Add the last chunk
    if current_chunk:
        chunks.append(current_chunk.strip())
    
    return chunks

def process_pdf(pdf_file):
    """Process PDF and create embeddings - OPTIMIZED"""
    global chunks, embeddings, embed_model, text_cache
    
    if pdf_file is None:
        return "❌ Please upload a PDF file!", None
    
    try:
        # Read PDF
        pdf_reader = PdfReader(pdf_file.name)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
        
        if not text.strip():
            return "❌ Could not extract text from PDF!", None
        
        text_cache = text  # Cache for faster reprocessing
        
        # Smart chunking (smaller chunks = faster embedding)
        chunks = smart_chunk_text(text, chunk_size=500, overlap=100)
        
        # Batch encode for speed
        print(f"Creating embeddings for {len(chunks)} chunks...")
        embeddings = embed_model.encode(
            chunks,
            batch_size=32,  # Process multiple chunks at once
            show_progress_bar=False,
            convert_to_numpy=True
        )
        
        return f"βœ… PDF processed! Created {len(chunks)} chunks. You can now ask questions!", None
        
    except Exception as e:
        print(f"Error processing PDF: {str(e)}")
        return f"❌ Error: {str(e)}", None

def find_relevant_chunks(query, top_k=2):  # Reduced from 3 to 2 for speed
    """Find most relevant chunks - OPTIMIZED"""
    global chunks, embeddings, embed_model
    
    if not chunks or len(embeddings) == 0:
        return []
    
    # Encode query
    query_embedding = embed_model.encode(
        [query],
        convert_to_numpy=True,
        show_progress_bar=False
    )[0]
    
    # Fast cosine similarity using numpy
    embeddings_norm = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
    query_norm = query_embedding / np.linalg.norm(query_embedding)
    similarities = np.dot(embeddings_norm, query_norm)
    
    # Get top k indices
    top_indices = np.argsort(similarities)[-top_k:][::-1]
    
    return [chunks[i] for i in top_indices]

def generate_response(question, context):
    """Generate response - OPTIMIZED"""
    global model, tokenizer
    
    # Shorter, more efficient prompt
    prompt = f"""Context: {context[:800]}

Question: {question}

Answer:"""
    
    inputs = tokenizer(
        prompt,
        return_tensors="pt",
        truncation=True,
        max_length=1024  # Reduced from 2048
    )
    
    # Faster generation settings
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=150,  # Reduced from 300
            temperature=0.7,
            top_p=0.9,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id,
            num_beams=1,  # Greedy search for speed
            early_stopping=True
        )
    
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Extract answer
    if "Answer:" in response:
        response = response.split("Answer:")[-1].strip()
    
    # Clean up response
    response = response.split("\n")[0].strip()  # Take first line
    
    return response

def chat(message, history):
    """Handle chat - OPTIMIZED"""
    global chunks
    
    if not chunks:
        return history + [[message, "⚠️ Please upload and process a PDF first!"]]
    
    if not message.strip():
        return history
    
    try:
        # Find relevant context (reduced chunks)
        relevant_chunks = find_relevant_chunks(message, top_k=2)
        context = " ".join(relevant_chunks)
        
        # Generate response
        response = generate_response(message, context)
        
        # Ensure response is not empty
        if not response or len(response) < 10:
            response = "I found relevant information but couldn't generate a clear answer. Please try rephrasing your question."
        
        return history + [[message, response]]
        
    except Exception as e:
        print(f"Error in chat: {str(e)}")
        return history + [[message, f"❌ Error: {str(e)}"]]

def clear_all():
    """Clear everything"""
    global chunks, embeddings, text_cache
    chunks = []
    embeddings = []
    text_cache = ""
    return None, "Ready to process a new PDF"

# Create UI with better styling
with gr.Blocks(title="Chat with PDF - Fast", theme=gr.themes.Soft()) as demo:
    gr.Markdown("# ⚑ Chat with PDF - Optimized Fast Version")
    gr.Markdown("*Using lightweight models for faster responses*")
    
    with gr.Row():
        with gr.Column(scale=1):
            pdf_input = gr.File(
                label="πŸ“Ž Upload PDF",
                file_types=[".pdf"]
            )
            process_btn = gr.Button(
                "πŸ”„ Process PDF",
                variant="primary",
                size="lg"
            )
            status = gr.Textbox(
                label="Status",
                lines=2,
                interactive=False
            )
            
            gr.Markdown("### Tips:")
            gr.Markdown("""
            - Processing is much faster now!
            - Ask specific questions
            - Keep questions concise
            """)
            
            clear_all_btn = gr.Button("πŸ—‘οΈ Clear All", variant="stop")
            
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(
                label="πŸ’¬ Chat",
                height=450,
                bubble_full_width=False
            )
            msg = gr.Textbox(
                label="Question",
                placeholder="Ask a question about the PDF...",
                lines=2
            )
            with gr.Row():
                send_btn = gr.Button("πŸ“€ Send", variant="primary")
                clear_btn = gr.Button("Clear Chat")
    
    # Events
    process_btn.click(
        process_pdf,
        inputs=[pdf_input],
        outputs=[status, chatbot]
    )
    
    msg.submit(
        chat,
        inputs=[msg, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        None,
        [msg]
    )
    
    send_btn.click(
        chat,
        inputs=[msg, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        None,
        [msg]
    )
    
    clear_btn.click(lambda: None, None, [chatbot])
    clear_all_btn.click(clear_all, None, [chatbot, status])

# Initialize on startup
initialize_models()

if __name__ == "__main__":
    demo.queue()  # Enable queuing for better performance
    demo.launch(share=False)