File size: 2,745 Bytes
3eaabcf
fac2e05
 
3eaabcf
fac2e05
 
3eaabcf
fac2e05
 
253d7c7
fac2e05
 
 
 
 
3eaabcf
 
fac2e05
253d7c7
3eaabcf
 
253d7c7
3eaabcf
 
fac2e05
3eaabcf
 
253d7c7
 
3eaabcf
 
253d7c7
 
fac2e05
 
3eaabcf
fac2e05
 
 
3eaabcf
 
fac2e05
 
 
3eaabcf
 
 
dae3a4f
fac2e05
 
 
 
 
 
dae3a4f
253d7c7
 
 
 
 
dae3a4f
fac2e05
dae3a4f
 
 
253d7c7
 
 
 
 
 
 
fac2e05
dae3a4f
fac2e05
dae3a4f
 
 
 
 
 
 
 
 
fac2e05
 
dae3a4f
 
253d7c7
 
dae3a4f
253d7c7
 
dae3a4f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import os
import json
import faiss
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from sentence_transformers import SentenceTransformer
from PIL import Image
import io
import requests

# Fix caching permissions for Hugging Face
os.environ["HF_HOME"] = "./cache"
os.environ["TRANSFORMERS_CACHE"] = "./cache"
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "./cache"

app = FastAPI()

# Enable CORS (for frontend)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # you can restrict to your Netlify domain later
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load products directly from products.json
with open("products.json", "r", encoding="utf-8") as f:
    products = json.load(f)

print(f"๐Ÿ“ฆ Loaded {len(products)} products")

# Load FAISS index
index = faiss.read_index("products.index")

# Load CLIP model
print("๐Ÿง  Loading CLIP model...")
model = SentenceTransformer("sentence-transformers/clip-ViT-B-32", cache_folder="./cache")


@app.get("/")
def root():
    return {"message": "๐Ÿš€ Visual Product Matcher API is running!"}


@app.post("/search_text")
def search_text(query: str = Form(...), top_k: int = 5, min_score: float = 0.0):
    """
    Search products using text query.
    """
    query_emb = model.encode([query], convert_to_numpy=True)
    distances, indices = index.search(query_emb, top_k)

    results = []
    for dist, idx in zip(distances[0], indices[0]):
        score = float(1 - dist)  # convert distance to similarity (optional)
        if score >= min_score:
            item = products[idx].copy()
            item["score"] = score
            results.append(item)

    return {"matches": results}


@app.post("/match")  # image search
async def search_image(
    file: UploadFile = File(None),
    image_url: str = Form(None),
    top_k: int = 5,
    min_score: float = 0.0
):
    """
    Search products using image query (upload or URL).
    """
    if file:
        image_bytes = await file.read()
        image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
    elif image_url:
        response = requests.get(image_url)
        image = Image.open(io.BytesIO(response.content)).convert("RGB")
    else:
        return {"error": "No image provided"}

    image_emb = model.encode([image], convert_to_numpy=True)
    distances, indices = index.search(image_emb, top_k)

    results = []
    for dist, idx in zip(distances[0], indices[0]):
        score = float(1 - dist)  # convert distance to similarity
        if score >= min_score:
            item = products[idx].copy()
            item["score"] = score
            results.append(item)

    return {"matches": results}