Spaces:
Runtime error
Runtime error
File size: 11,196 Bytes
0514b67 2a8d890 0514b67 6c510a2 0514b67 6c510a2 3add779 0514b67 2a8d890 6c510a2 0514b67 6c510a2 0514b67 6c510a2 0514b67 2a8d890 6c510a2 0514b67 6c510a2 0514b67 6c510a2 0514b67 6c510a2 0514b67 2a8d890 6c510a2 2a8d890 0514b67 6c510a2 2a8d890 0514b67 2a8d890 0514b67 2a8d890 6c510a2 2a8d890 6c510a2 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 0514b67 2a8d890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
# import os
# from flask import Flask, render_template, request, jsonify
# from langdetect import detect
# import torch
# import torch.nn.functional as F
# from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# os.environ["HF_HOME"] = "/data/huggingface"
# os.environ["TRANSFORMERS_CACHE"] = "/data/huggingface"
# os.makedirs("/data/huggingface", exist_ok=True)
# os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
# os.environ["TRANSFORMERS_OFFLINE"] = "0"
# os.environ["HF_HUB_DISABLE_CACHE"] = "1"
# app = Flask(__name__)
# # --------- Models ----------
# VI_MODEL_NAME = "wonrax/phobert-base-vietnamese-sentiment"
# EN_MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # Vietnamese model
# # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
# # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME).to(device)
# # vi_model.eval()
# # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
# # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME)
# # vi_model.eval()
# # sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
# # # English model
# # en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
# # en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
# # en_model.eval()
# print("Loading Vietnamese model from Hugging Face Hub (no cache)...")
# vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False, local_files_only=False)
# vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME, local_files_only=False)
# vi_model.eval()
# sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
# print("Loading English model from Hugging Face Hub (no cache)...")
# en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME, local_files_only=False)
# en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME, local_files_only=False)
# en_model.eval()
# # Label mapping cho PhoBERT
# vi_label_map = {
# 0: ("NEGATIVE", "Tiêu cực"),
# 1: ("NEUTRAL", "Trung tính"),
# 2: ("POSITIVE", "Tích cực")
# }
# # Label mapping cho tiếng Anh
# en_label_map = {
# 0: ("NEGATIVE", "Negative"),
# 1: ("POSITIVE", "Positive")
# }
# # -----------------------------
# # Ngôn ngữ nhận diện
# # -----------------------------
# def detect_lang(text: str) -> str:
# try:
# lang = detect(text)
# if lang.startswith("vi"):
# return "vi"
# elif lang.startswith("en"):
# return "en"
# else:
# if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
# return "vi"
# return "en"
# except Exception:
# if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
# return "vi"
# return "en"
# # -----------------------------
# # Phân tích tiếng Việt (PhoBERT)
# # -----------------------------
# # def analyze_vi(text: str):
# # inputs = vi_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
# # with torch.no_grad():
# # outputs = vi_model(**inputs)
# # logits = outputs.logits.squeeze(0)
# # probs = torch.softmax(logits, dim=-1)
# # label_idx = int(torch.argmax(probs).item())
# # eng_label, vi_label = vi_label_map[label_idx]
# # confidence = float(probs[label_idx].item())
# # scores = {
# # vi_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(3)
# # }
# # return {
# # "language": "vi",
# # "label": vi_label,
# # "english_label": eng_label,
# # "score": round(confidence, 3),
# # "scores": scores
# # }
# def analyze_vi(text: str):
# if not text.strip():
# return {"error": "Text is empty."}
# # Dùng pipeline của transformers
# result = sentiment_pipeline(text)[0]
# label = result["label"]
# score = round(result["score"], 3)
# # Map nhãn tiếng Việt
# label_map = {
# "POS": "Tích cực",
# "NEG": "Tiêu cực",
# "NEU": "Trung tính"
# }
# vi_label = label_map.get(label, label)
# # Trả kết quả tương thích với frontend
# return {
# "language": "vi",
# "label": vi_label,
# "english_label": label, # Giữ nhãn gốc POS/NEG/NEU
# "score": score,
# "scores": {
# "Tích cực": score if label == "POS" else 0.0,
# "Trung tính": score if label == "NEU" else 0.0,
# "Tiêu cực": score if label == "NEG" else 0.0
# }
# }
# # -----------------------------
# # Phân tích tiếng Anh
# # -----------------------------
# def analyze_en(text: str):
# inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
# with torch.no_grad():
# outputs = en_model(**inputs)
# logits = outputs.logits.squeeze(0)
# probs = torch.softmax(logits, dim=-1)
# label_idx = int(torch.argmax(probs).item())
# eng_label, vi_label = en_label_map[label_idx]
# confidence = float(probs[label_idx].item())
# scores = {
# en_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(2)
# }
# return {
# "language": "en",
# "label": vi_label, # Giữ English, có thể đổi sang tiếng Việt nếu muốn
# "english_label": eng_label,
# "score": round(confidence, 3),
# "scores": scores
# }
# # -----------------------------
# # Flask routes
# # -----------------------------
# @app.route("/", methods=["GET"])
# def home():
# return render_template("index.html")
# @app.route("/analyze", methods=["POST"])
# def analyze():
# data = request.get_json(force=True)
# text = (data.get("text") or "").strip()
# lang = (data.get("lang") or "auto").lower()
# if not text:
# return jsonify({"error": "Text is empty."}), 400
# if lang == "auto":
# lang = detect_lang(text)
# if lang == "vi":
# result = analyze_vi(text)
# else:
# result = analyze_en(text)
# return jsonify({
# "ok": True,
# "input": {"text": text, "lang": lang},
# "result": result
# })
# if __name__ == "__main__":
# port = int(os.environ.get("PORT", 7860))
# app.run(host="0.0.0.0", port=port)
import os
from flask import Flask, render_template, request, jsonify
from langdetect import detect
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# ⚙️ Ép Hugging Face không ghi cache, chỉ load vào RAM
os.environ["HF_HUB_DISABLE_CACHE"] = "1"
os.environ["TRANSFORMERS_CACHE"] = "/dev/null" # ⛔ cache về null
os.environ["HF_HOME"] = "/dev/null" # ⛔ home cache về null
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
os.environ["TRANSFORMERS_OFFLINE"] = "0"
os.environ["DISABLE_TELEMETRY"] = "1"
app = Flask(__name__)
# --------- Models ----------
VI_MODEL_NAME = "wonrax/phobert-base-vietnamese-sentiment"
EN_MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("🔄 Loading Vietnamese model (RAM-only mode)...")
vi_tokenizer = AutoTokenizer.from_pretrained(
VI_MODEL_NAME,
use_fast=False,
local_files_only=False,
cache_dir=None,
)
vi_model = AutoModelForSequenceClassification.from_pretrained(
VI_MODEL_NAME,
local_files_only=False,
cache_dir=None,
).to(device)
vi_model.eval()
sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
print("✅ Vietnamese model loaded successfully.")
print("🔄 Loading English model (RAM-only mode)...")
en_tokenizer = AutoTokenizer.from_pretrained(
EN_MODEL_NAME,
local_files_only=False,
cache_dir=None,
)
en_model = AutoModelForSequenceClassification.from_pretrained(
EN_MODEL_NAME,
local_files_only=False,
cache_dir=None,
).to(device)
en_model.eval()
print("✅ English model loaded successfully.")
# -----------------------------
# Detect language
# -----------------------------
def detect_lang(text: str) -> str:
try:
lang = detect(text)
if lang.startswith("vi"):
return "vi"
elif lang.startswith("en"):
return "en"
except Exception:
pass
if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
return "vi"
return "en"
# -----------------------------
# Vietnamese analysis
# -----------------------------
def analyze_vi(text: str):
result = sentiment_pipeline(text)[0]
label_map = {"POS": "Tích cực", "NEG": "Tiêu cực", "NEU": "Trung tính"}
label = result["label"]
score = round(result["score"], 3)
return {
"language": "vi",
"label": label_map.get(label, label),
"english_label": label,
"score": score,
"scores": {
"Tích cực": score if label == "POS" else 0.0,
"Trung tính": score if label == "NEU" else 0.0,
"Tiêu cực": score if label == "NEG" else 0.0,
},
}
# -----------------------------
# English analysis
# -----------------------------
def analyze_en(text: str):
inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
with torch.no_grad():
logits = en_model(**inputs).logits.squeeze(0)
probs = torch.softmax(logits, dim=-1)
label_idx = int(torch.argmax(probs))
labels = ["Negative", "Positive"]
return {
"language": "en",
"label": labels[label_idx],
"score": round(float(probs[label_idx]), 3),
"scores": {labels[i]: round(float(probs[i]), 3) for i in range(2)},
}
# -----------------------------
# Flask routes
# -----------------------------
@app.route("/", methods=["GET"])
def home():
return render_template("index.html")
@app.route("/analyze", methods=["POST"])
def analyze():
data = request.get_json(force=True)
text = (data.get("text") or "").strip()
lang = (data.get("lang") or "auto").lower()
if not text:
return jsonify({"error": "Text is empty."}), 400
if lang == "auto":
lang = detect_lang(text)
result = analyze_vi(text) if lang == "vi" else analyze_en(text)
return jsonify({"ok": True, "input": {"text": text, "lang": lang}, "result": result})
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
app.run(host="0.0.0.0", port=port)
|