Spaces:
Running
Running
File size: 33,936 Bytes
a703203 248f5a7 a703203 8c3c2b9 a703203 d181b45 a73d8f4 889f080 b858214 4c6b4c5 a7866ff 4c6b4c5 882aef2 ac8e9cc 4c6b4c5 0ff6c39 d181b45 eb215ff cd26609 4af617b 8cdf3e1 ab92e0d 8cdf3e1 e5a1663 4af617b fea2910 ab92e0d fea2910 d3726c6 ab92e0d d3726c6 2b25033 ab92e0d 3665b54 e5a1663 3c22497 ab92e0d 3c22497 ab92e0d 8eefe94 e5a1663 3dc7ced 3c22497 e5a1663 ab92e0d e5a1663 ab92e0d e5a1663 3c22497 ab92e0d 3c22497 d3726c6 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 88f3bc6 8eefe94 e5a1663 5e03586 3c22497 ab92e0d ddfffab 3c22497 ab92e0d ddfffab 3c22497 ab92e0d 3c22497 ab92e0d f82b9e0 c30a7f7 ab92e0d c30a7f7 8eefe94 e5a1663 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d f82b9e0 e5a1663 8eefe94 ab92e0d 8eefe94 e5a1663 3c22497 ab92e0d 8eefe94 e5a1663 3c22497 ab92e0d de303d7 8eefe94 e5a1663 3c22497 ab92e0d 8eefe94 e5a1663 3c22497 ab92e0d de303d7 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 e5a1663 3c22497 ab92e0d de303d7 8eefe94 e5a1663 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 8eefe94 6a4537b e5a1663 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 ab92e0d 3c22497 cd26609 ac8e9cc a703203 ac8e9cc 293686e ac8e9cc 293686e 882aef2 293686e 889f080 293686e 882aef2 426163f 882aef2 293686e ac8e9cc 293686e 889f080 ac8e9cc 426163f ac8e9cc a703203 293686e f2f4310 ac8e9cc 293686e ac8e9cc a703203 293686e a703203 293686e 960db60 8c3c2b9 960db60 ef361b0 6073cc2 ab92e0d 4500f92 de766da 4500f92 6073cc2 293686e e2ee907 ac8e9cc 293686e ac8e9cc 293686e a703203 293686e a703203 293686e eb215ff 6a87eb4 bc257ff 6a87eb4 8d42201 bc257ff 9ad3ffd a2f07a4 9ad3ffd e2ee907 a2f07a4 6a87eb4 8d42201 a2f07a4 9ad3ffd ac8e9cc a7866ff 960db60 41ee8bf 293686e 939895d 293686e 939895d 293686e 8c3c2b9 939895d 293686e 8c3c2b9 293686e 8c3c2b9 293686e 41ee8bf eb215ff 8c3c2b9 c09049b ac8e9cc eb215ff 293686e 5f6306a 6a87eb4 5f6306a fc989b4 eb215ff 293686e eb215ff d181b45 293686e a703203 2cae073 293686e fc989b4 a703203 2cae073 293686e 079e166 a703203 4418827 e2ee907 293686e a703203 293686e fc989b4 293686e e2ee907 293686e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
import os
import time
import gc
import threading
from itertools import islice
from datetime import datetime
import re # for parsing <think> blocks
import gradio as gr
import torch
from transformers import pipeline, TextIteratorStreamer, StoppingCriteria
from transformers import AutoTokenizer
from ddgs import DDGS
import spaces # Import spaces early to enable ZeroGPU support
from torch.utils._pytree import tree_map
access_token=os.environ['HF_TOKEN']
# Optional: Disable GPU visibility if you wish to force CPU usage
# os.environ["CUDA_VISIBLE_DEVICES"] = ""
# ------------------------------
# Torch-Compatible Model Definitions with Adjusted Descriptions
# ------------------------------
MODELS = {
# "Qwen/Qwen3-Next-80B-A3B-Instruct-FP8": {
# "repo_id": "Qwen/Qwen3-Next-80B-A3B-Instruct-FP8",
# "description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization for efficiency. Optimized for fast, stable instruction-following dialogue without 'thinking' traces, making it ideal for general chat and low-latency applications [[2]][[3]][[5]][[8]].",
# "params_b": 80.0
# },
# "Qwen/Qwen3-Next-80B-A3B-Thinking-FP8": {
# "repo_id": "Qwen/Qwen3-Next-80B-A3B-Thinking-FP8",
# "description": "Sparse Mixture-of-Experts (MoE) causal language model with 80B total parameters and approximately 3B activated per inference step. Features include native 32,768-token context (extendable to 131,072 via YaRN), 16 query heads and 2 KV heads, head dimension of 256, and FP8 quantization. Specialized for complex reasoning, math, and coding tasks, this model outputs structured 'thinking' traces by default and is designed to be used with a reasoning parser [[10]][[11]][[14]][[18]].",
# "params_b": 80.0
# },
"Qwen3-32B-FP8": {
"repo_id": "Qwen/Qwen3-32B-FP8",
"description": "Dense causal language model with 32.8B total parameters (31.2B non-embedding), 64 layers, 64 query heads & 8 KV heads, native 32,768-token context (extendable to 131,072 via YaRN). Features seamless switching between thinking mode (for complex reasoning, math, coding) and non-thinking mode (for efficient dialogue), strong multilingual support (100+ languages), and leading open-source agent capabilities.",
"params_b": 32.8
},
# ~30.5B total parameters (MoE: 3.3B activated)
# "Qwen3-30B-A3B-Instruct-2507": {
# "repo_id": "Qwen/Qwen3-30B-A3B-Instruct-2507",
# "description": "non-thinking-mode MoE model based on Qwen3-30B-A3B-Instruct-2507. Features 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and native 262,144-token context. Excels in instruction following, logical reasoning, multilingualism, coding, and long-context understanding. Supports only non-thinking mode (no <think> blocks). Quantized using AWQ (W4A16) with lm_head and gating layers preserved in higher precision.",
# "params_b": 30.5
# },
# "Qwen3-30B-A3B-Thinking-2507": {
# "repo_id": "Qwen/Qwen3-30B-A3B-Thinking-2507",
# "description": "thinking-mode MoE model based on Qwen3-30B-A3B-Thinking-2507. Contains 30.5B total parameters (3.3B activated), 128 experts (8 activated), 48 layers, and 262,144-token native context. Optimized for deep reasoning in mathematics, science, coding, and agent tasks. Outputs include automatic reasoning delimiters (<think>...</think>). Quantized with AWQ (W4A16), preserving lm_head and expert gating layers.",
# "params_b": 30.5
# },
"gpt-oss-20b-BF16": {
"repo_id": "unsloth/gpt-oss-20b-BF16",
"description": "A 20B-parameter open-source GPT-style language model quantized to INT4 using AutoRound, with FP8 key-value cache for efficient inference. Optimized for performance and memory efficiency on Intel hardware while maintaining strong language generation capabilities.",
"params_b": 20.0
},
"Qwen3-4B-Instruct-2507": {
"repo_id": "Qwen/Qwen3-4B-Instruct-2507",
"description": "Updated non-thinking instruct variant of Qwen3-4B with 4.0B parameters, featuring significant improvements in instruction following, logical reasoning, multilingualism, and 256K long-context understanding. Strong performance across knowledge, coding, alignment, and agent benchmarks.",
"params_b": 4.0
},
"Apriel-1.5-15b-Thinker": {
"repo_id": "ServiceNow-AI/Apriel-1.5-15b-Thinker",
"description": "Multimodal reasoning model with 15B parameters, trained via extensive mid-training on text and image data, and fine-tuned only on text (no image SFT). Achieves competitive performance on reasoning benchmarks like Artificial Analysis (score: 52), Tau2 Bench Telecom (68), and IFBench (62). Supports both text and image understanding, fits on a single GPU, and includes structured reasoning output with tool and function calling capabilities.",
"params_b": 15.0
},
# 14.8B total parameters
"Qwen3-14B": {
"repo_id": "Qwen/Qwen3-14B",
"description": "Dense causal language model with 14.8 B total parameters (13.2 B non-embedding), 40 layers, 40 query heads & 8 KV heads, 32 768-token context (131 072 via YaRN), enhanced human preference alignment & advanced agent integration.",
"params_b": 14.8
},
"Qwen/Qwen3-14B-FP8": {
"repo_id": "Qwen/Qwen3-14B-FP8",
"description": "FP8-quantized version of Qwen3-14B for efficient inference.",
"params_b": 14.8
},
# ~15B (commented out in original, but larger than 14B)
# "Apriel-1.5-15b-Thinker": { ... },
# 5B
# "Apriel-5B-Instruct": {
# "repo_id": "ServiceNow-AI/Apriel-5B-Instruct",
# "description": "A 5B-parameter instruction-tuned model from ServiceNow’s Apriel series, optimized for enterprise tasks and general-purpose instruction following."
# },
# 4.3B
"Phi-4-mini-Reasoning": {
"repo_id": "microsoft/Phi-4-mini-reasoning",
"description": "Phi-4-mini-Reasoning (4.3B parameters)",
"params_b": 4.3
},
"Phi-4-mini-Instruct": {
"repo_id": "microsoft/Phi-4-mini-instruct",
"description": "Phi-4-mini-Instruct (4.3B parameters)",
"params_b": 4.3
},
# 4.0B
"Qwen3-4B": {
"repo_id": "Qwen/Qwen3-4B",
"description": "Dense causal language model with 4.0 B total parameters (3.6 B non-embedding), 36 layers, 32 query heads & 8 KV heads, native 32 768-token context (extendable to 131 072 via YaRN), balanced mid-range capacity & long-context reasoning.",
"params_b": 4.0
},
"Gemma-3-4B-IT": {
"repo_id": "unsloth/gemma-3-4b-it",
"description": "Gemma-3-4B-IT",
"params_b": 4.0
},
"MiniCPM3-4B": {
"repo_id": "openbmb/MiniCPM3-4B",
"description": "MiniCPM3-4B",
"params_b": 4.0
},
"Gemma-3n-E4B": {
"repo_id": "google/gemma-3n-E4B",
"description": "Gemma 3n base model with effective 4 B parameters (≈3 GB VRAM)",
"params_b": 4.0
},
"SmallThinker-4BA0.6B-Instruct": {
"repo_id": "PowerInfer/SmallThinker-4BA0.6B-Instruct",
"description": "SmallThinker 4 B backbone with 0.6 B activated parameters, instruction‑tuned",
"params_b": 4.0
},
# ~3B
# "AI21-Jamba-Reasoning-3B": {
# "repo_id": "ai21labs/AI21-Jamba-Reasoning-3B",
# "description": "A compact 3B hybrid Transformer–Mamba reasoning model with 256K context length, strong intelligence benchmark scores (61% MMLU-Pro, 52% IFBench), and efficient inference suitable for edge and datacenter use. Outperforms Gemma-3 4B and Llama-3.2 3B despite smaller size."
# },
"Qwen2.5-Taiwan-3B-Reason-GRPO": {
"repo_id": "benchang1110/Qwen2.5-Taiwan-3B-Reason-GRPO",
"description": "Qwen2.5-Taiwan model with 3 B parameters, Reason-GRPO fine-tuned",
"params_b": 3.0
},
"Llama-3.2-Taiwan-3B-Instruct": {
"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct",
"description": "Llama-3.2-Taiwan-3B-Instruct",
"params_b": 3.0
},
"Qwen2.5-3B-Instruct": {
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
"description": "Qwen2.5-3B-Instruct",
"params_b": 3.0
},
"Qwen2.5-Omni-3B": {
"repo_id": "Qwen/Qwen2.5-Omni-3B",
"description": "Qwen2.5-Omni-3B",
"params_b": 3.0
},
"Granite-4.0-Micro": {
"repo_id": "ibm-granite/granite-4.0-micro",
"description": "A 3B-parameter long-context instruct model from IBM, finetuned for enhanced instruction following and tool-calling. Supports 12 languages including English, Chinese, Arabic, and Japanese. Built on a dense Transformer with GQA, RoPE, SwiGLU, and 128K context length. Trained using SFT, RL alignment, and model merging techniques for enterprise applications.",
"params_b": 3.0
},
# 2.6B
"LFM2-2.6B": {
"repo_id": "LiquidAI/LFM2-2.6B",
"description": "The 2.6B parameter model in the LFM2 series, it outperforms models in the 3B+ class and features a hybrid architecture for faster inference.",
"params_b": 2.6
},
# 1.7B
"Qwen3-1.7B": {
"repo_id": "Qwen/Qwen3-1.7B",
"description": "Dense causal language model with 1.7 B total parameters (1.4 B non-embedding), 28 layers, 16 query heads & 8 KV heads, 32 768-token context, stronger reasoning vs. 0.6 B variant, dual-mode inference, instruction following across 100+ languages.",
"params_b": 1.7
},
# ~2B (effective)
"Gemma-3n-E2B": {
"repo_id": "google/gemma-3n-E2B",
"description": "Gemma 3n base model with effective 2 B parameters (≈2 GB VRAM)",
"params_b": 2.0
},
# 1.5B
"Nemotron-Research-Reasoning-Qwen-1.5B": {
"repo_id": "nvidia/Nemotron-Research-Reasoning-Qwen-1.5B",
"description": "Nemotron-Research-Reasoning-Qwen-1.5B",
"params_b": 1.5
},
"Falcon-H1-1.5B-Instruct": {
"repo_id": "tiiuae/Falcon-H1-1.5B-Instruct",
"description": "Falcon‑H1 model with 1.5 B parameters, instruction‑tuned",
"params_b": 1.5
},
"Qwen2.5-Taiwan-1.5B-Instruct": {
"repo_id": "benchang1110/Qwen2.5-Taiwan-1.5B-Instruct",
"description": "Qwen2.5-Taiwan-1.5B-Instruct",
"params_b": 1.5
},
# 1.2B
"LFM2-1.2B": {
"repo_id": "LiquidAI/LFM2-1.2B",
"description": "A 1.2B parameter hybrid language model from Liquid AI, designed for efficient on-device and edge AI deployment, outperforming larger models like Llama-2-7b-hf in specific tasks.",
"params_b": 1.2
},
# 1.1B
"Taiwan-ELM-1_1B-Instruct": {
"repo_id": "liswei/Taiwan-ELM-1_1B-Instruct",
"description": "Taiwan-ELM-1_1B-Instruct",
"params_b": 1.1
},
# 1B
"Llama-3.2-Taiwan-1B": {
"repo_id": "lianghsun/Llama-3.2-Taiwan-1B",
"description": "Llama-3.2-Taiwan base model with 1 B parameters",
"params_b": 1.0
},
# 700M
"LFM2-700M": {
"repo_id": "LiquidAI/LFM2-700M",
"description": "A 700M parameter model from the LFM2 family, designed for high efficiency on edge devices with a hybrid architecture of multiplicative gates and short convolutions.",
"params_b": 0.7
},
# 600M
"Qwen3-0.6B": {
"repo_id": "Qwen/Qwen3-0.6B",
"description": "Dense causal language model with 0.6 B total parameters (0.44 B non-embedding), 28 transformer layers, 16 query heads & 8 KV heads, native 32 768-token context window, dual-mode generation, full multilingual & agentic capabilities.",
"params_b": 0.6
},
"Qwen3-0.6B-Taiwan": {
"repo_id": "ShengweiPeng/Qwen3-0.6B-Taiwan",
"description": "Qwen3-Taiwan model with 0.6 B parameters",
"params_b": 0.6
},
# 500M
"Qwen2.5-0.5B-Taiwan-Instruct": {
"repo_id": "ShengweiPeng/Qwen2.5-0.5B-Taiwan-Instruct",
"description": "Qwen2.5-Taiwan model with 0.5 B parameters, instruction-tuned",
"params_b": 0.5
},
# 360M
"SmolLM2-360M-Instruct": {
"repo_id": "HuggingFaceTB/SmolLM2-360M-Instruct",
"description": "Original SmolLM2‑360M Instruct",
"params_b": 0.36
},
"SmolLM2-360M-Instruct-TaiwanChat": {
"repo_id": "Luigi/SmolLM2-360M-Instruct-TaiwanChat",
"description": "SmolLM2‑360M Instruct fine-tuned on TaiwanChat",
"params_b": 0.36
},
# 350M
"LFM2-350M": {
"repo_id": "LiquidAI/LFM2-350M",
"description": "A compact 350M parameter hybrid model optimized for edge and on-device applications, offering significantly faster training and inference speeds compared to models like Qwen3.",
"params_b": 0.35
},
# 270M
"parser_model_ner_gemma_v0.1": {
"repo_id": "myfi/parser_model_ner_gemma_v0.1",
"description": "A lightweight named‑entity‑like (NER) parser fine‑tuned from Google’s **Gemma‑3‑270M** model. The base Gemma‑3‑270M is a 270 M‑parameter, hyper‑efficient LLM designed for on‑device inference, supporting >140 languages, a 128 k‑token context window, and instruction‑following capabilities [2][7]. This variant is further trained on standard NER corpora (e.g., CoNLL‑2003, OntoNotes) to extract PERSON, ORG, LOC, and MISC entities with high precision while keeping the memory footprint low (≈240 MB VRAM in BF16 quantized form) [1]. It is released under the Apache‑2.0 license and can be used for fast, cost‑effective entity extraction in low‑resource environments.",
"params_b": 0.27
},
"Gemma-3-Taiwan-270M-it": {
"repo_id": "lianghsun/Gemma-3-Taiwan-270M-it",
"description": "google/gemma-3-270m-it fintuned on Taiwan Chinese dataset",
"params_b": 0.27
},
"gemma-3-270m-it": {
"repo_id": "google/gemma-3-270m-it",
"description": "Gemma‑3‑270M‑IT is a compact, 270‑million‑parameter language model fine‑tuned for Italian, offering fast and efficient on‑device text generation and comprehension in the Italian language.",
"params_b": 0.27
},
"Taiwan-ELM-270M-Instruct": {
"repo_id": "liswei/Taiwan-ELM-270M-Instruct",
"description": "Taiwan-ELM-270M-Instruct",
"params_b": 0.27
},
# 135M
"SmolLM2-135M-multilingual-base": {
"repo_id": "agentlans/SmolLM2-135M-multilingual-base",
"description": "SmolLM2-135M-multilingual-base",
"params_b": 0.135
},
"SmolLM-135M-Taiwan-Instruct-v1.0": {
"repo_id": "benchang1110/SmolLM-135M-Taiwan-Instruct-v1.0",
"description": "135-million-parameter F32 safetensors instruction-finetuned variant of SmolLM-135M-Taiwan, trained on the 416 k-example ChatTaiwan dataset for Traditional Chinese conversational and instruction-following tasks",
"params_b": 0.135
},
"SmolLM2_135M_Grpo_Gsm8k": {
"repo_id": "prithivMLmods/SmolLM2_135M_Grpo_Gsm8k",
"description": "SmolLM2_135M_Grpo_Gsm8k",
"params_b": 0.135
},
"SmolLM2-135M-Instruct": {
"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct",
"description": "Original SmolLM2‑135M Instruct",
"params_b": 0.135
},
"SmolLM2-135M-Instruct-TaiwanChat": {
"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat",
"description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat",
"params_b": 0.135
},
}
# Global cache for pipelines to avoid re-loading.
PIPELINES = {}
def load_pipeline(model_name):
"""
Load and cache a transformers pipeline for text generation.
Tries bfloat16, falls back to float16 or float32 if unsupported.
"""
global PIPELINES
if model_name in PIPELINES:
return PIPELINES[model_name]
repo = MODELS[model_name]["repo_id"]
tokenizer = AutoTokenizer.from_pretrained(repo,
token=access_token)
for dtype in (torch.bfloat16, torch.float16, torch.float32):
try:
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
torch_dtype=dtype,
device_map="auto",
use_cache=True, # Enable past-key-value caching
token=access_token)
PIPELINES[model_name] = pipe
return pipe
except Exception:
continue
# Final fallback
pipe = pipeline(
task="text-generation",
model=repo,
tokenizer=tokenizer,
trust_remote_code=True,
device_map="auto",
use_cache=True
)
PIPELINES[model_name] = pipe
return pipe
def retrieve_context(query, max_results=6, max_chars=50):
"""
Retrieve search snippets from DuckDuckGo (runs in background).
Returns a list of result strings.
"""
try:
with DDGS() as ddgs:
return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
except Exception:
return []
def format_conversation(history, system_prompt, tokenizer):
if hasattr(tokenizer, "chat_template") and tokenizer.chat_template:
messages = [{"role": "system", "content": system_prompt.strip()}] + history
return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, enable_thinking=True)
else:
# Fallback for base LMs without chat template
prompt = system_prompt.strip() + "\n"
for msg in history:
if msg['role'] == 'user':
prompt += "User: " + msg['content'].strip() + "\n"
elif msg['role'] == 'assistant':
prompt += "Assistant: " + msg['content'].strip() + "\n"
if not prompt.strip().endswith("Assistant:"):
prompt += "Assistant: "
return prompt
def get_duration(user_msg, chat_history, system_prompt, enable_search, max_results, max_chars, model_name, max_tokens, temperature, top_k, top_p, repeat_penalty, search_timeout):
# Get model size from the MODELS dict (more reliable than string parsing)
model_size = MODELS[model_name].get("params_b", 4.0) # Default to 4B if not found
# Only use AOT for models >= 2B parameters
use_aot = model_size >= 2
# Adjusted for H200 performance: faster inference, quicker compilation
base_duration = 20 if not use_aot else 40 # Reduced base times
token_duration = max_tokens * 0.005 # ~200 tokens/second average on H200
search_duration = 10 if enable_search else 0 # Reduced search time
aot_compilation_buffer = 20 if use_aot else 0 # Faster compilation on H200
return base_duration + token_duration + search_duration + aot_compilation_buffer
@spaces.GPU(duration=get_duration)
def chat_response(user_msg, chat_history, system_prompt,
enable_search, max_results, max_chars,
model_name, max_tokens, temperature,
top_k, top_p, repeat_penalty, search_timeout):
"""
Generates streaming chat responses, optionally with background web search.
"""
history = list(chat_history or [])
history.append({'role': 'user', 'content': user_msg})
# Launch web search if enabled
debug = ''
search_results = []
if enable_search:
debug = 'Search task started.'
thread_search = threading.Thread(
target=lambda: search_results.extend(
retrieve_context(user_msg, int(max_results), int(max_chars))
)
)
thread_search.daemon = True
thread_search.start()
else:
debug = 'Web search disabled.'
try:
cur_date = datetime.now().strftime('%Y-%m-%d')
# merge any fetched search results into the system prompt
if search_results:
enriched = system_prompt.strip() + \
f'''\n# The following contents are the search results related to the user's message:
{search_results}
In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer.
When responding, please keep the following points in mind:
- Today is {cur_date}.
- Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question.
- For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary.
- For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough.
- If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content.
- For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content.
- Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability.
- Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage.
- Unless the user requests otherwise, your response should be in the same language as the user's question.
# The user's message is:
'''
else:
enriched = system_prompt
# wait up to 1s for snippets, then replace debug with them
if enable_search:
thread_search.join(timeout=float(search_timeout))
if search_results:
debug = "### Search results merged into prompt\n\n" + "\n".join(
f"- {r}" for r in search_results
)
else:
debug = "*No web search results found.*"
# merge fetched snippets into the system prompt
if search_results:
enriched = system_prompt.strip() + \
f'''\n# The following contents are the search results related to the user's message:
{search_results}
In the search results I provide to you, each result is formatted as [webpage X begin]...[webpage X end], where X represents the numerical index of each article. Please cite the context at the end of the relevant sentence when appropriate. Use the citation format [citation:X] in the corresponding part of your answer. If a sentence is derived from multiple contexts, list all relevant citation numbers, such as [citation:3][citation:5]. Be sure not to cluster all citations at the end; instead, include them in the corresponding parts of the answer.
When responding, please keep the following points in mind:
- Today is {cur_date}.
- Not all content in the search results is closely related to the user's question. You need to evaluate and filter the search results based on the question.
- For listing-type questions (e.g., listing all flight information), try to limit the answer to 10 key points and inform the user that they can refer to the search sources for complete information. Prioritize providing the most complete and relevant items in the list. Avoid mentioning content not provided in the search results unless necessary.
- For creative tasks (e.g., writing an essay), ensure that references are cited within the body of the text, such as [citation:3][citation:5], rather than only at the end of the text. You need to interpret and summarize the user's requirements, choose an appropriate format, fully utilize the search results, extract key information, and generate an answer that is insightful, creative, and professional. Extend the length of your response as much as possible, addressing each point in detail and from multiple perspectives, ensuring the content is rich and thorough.
- If the response is lengthy, structure it well and summarize it in paragraphs. If a point-by-point format is needed, try to limit it to 5 points and merge related content.
- For objective Q&A, if the answer is very brief, you may add one or two related sentences to enrich the content.
- Choose an appropriate and visually appealing format for your response based on the user's requirements and the content of the answer, ensuring strong readability.
- Your answer should synthesize information from multiple relevant webpages and avoid repeatedly citing the same webpage.
- Unless the user requests otherwise, your response should be in the same language as the user's question.
# The user's message is:
'''
else:
enriched = system_prompt
pipe = load_pipeline(model_name)
prompt = format_conversation(history, enriched, pipe.tokenizer)
prompt_debug = f"\n\n--- Prompt Preview ---\n```\n{prompt}\n```"
streamer = TextIteratorStreamer(pipe.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
gen_thread = threading.Thread(
target=pipe,
args=(prompt,),
kwargs={
'max_new_tokens': max_tokens,
'temperature': temperature,
'top_k': top_k,
'top_p': top_p,
'repetition_penalty': repeat_penalty,
'streamer': streamer,
'return_full_text': False,
}
)
gen_thread.start()
# Buffers for thought vs answer
thought_buf = ''
answer_buf = ''
in_thought = False
# Stream tokens
for chunk in streamer:
text = chunk
# Detect start of thinking
if not in_thought and '<think>' in text:
in_thought = True
# Insert thought placeholder
history.append({
'role': 'assistant',
'content': '',
'metadata': {'title': '💭 Thought'}
})
# Capture after opening tag
after = text.split('<think>', 1)[1]
thought_buf += after
# If closing tag in same chunk
if '</think>' in thought_buf:
before, after2 = thought_buf.split('</think>', 1)
history[-1]['content'] = before.strip()
in_thought = False
# Start answer buffer
answer_buf = after2
history.append({'role': 'assistant', 'content': answer_buf})
else:
history[-1]['content'] = thought_buf
yield history, debug
continue
# Continue thought streaming
if in_thought:
thought_buf += text
if '</think>' in thought_buf:
before, after2 = thought_buf.split('</think>', 1)
history[-1]['content'] = before.strip()
in_thought = False
# Start answer buffer
answer_buf = after2
history.append({'role': 'assistant', 'content': answer_buf})
else:
history[-1]['content'] = thought_buf
yield history, debug
continue
# Stream answer
if not answer_buf:
history.append({'role': 'assistant', 'content': ''})
answer_buf += text
history[-1]['content'] = answer_buf
yield history, debug
gen_thread.join()
yield history, debug + prompt_debug
except Exception as e:
history.append({'role': 'assistant', 'content': f"Error: {e}"})
yield history, debug
finally:
gc.collect()
def update_default_prompt(enable_search):
return f"You are a helpful assistant."
def update_duration_estimate(model_name, enable_search, max_results, max_chars, max_tokens, search_timeout):
"""Calculate and format the estimated GPU duration for current settings."""
try:
# Create dummy values for the other parameters that get_duration expects
dummy_msg = ""
dummy_history = []
dummy_system_prompt = ""
duration = get_duration(dummy_msg, dummy_history, dummy_system_prompt,
enable_search, max_results, max_chars, model_name,
max_tokens, 0.7, 40, 0.9, 1.2, search_timeout)
model_size = MODELS[model_name].get("params_b", 4.0)
use_aot = model_size >= 2
return f"⏱️ **Estimated GPU Time: {duration:.1f} seconds**\n\n" \
f"📊 **Model Size:** {model_size:.1f}B parameters\n" \
f"🔍 **Web Search:** {'Enabled' if enable_search else 'Disabled'}"
except Exception as e:
return f"⚠️ Error calculating estimate: {e}"
# ------------------------------
# Gradio UI
# ------------------------------
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
gr.Markdown("Interact with the model. Select parameters and chat below.")
with gr.Row():
with gr.Column(scale=3):
model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value="Qwen3-1.7B")
search_chk = gr.Checkbox(label="Enable Web Search", value=False)
sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
# GPU Time Estimate Display
duration_display = gr.Markdown(value=update_duration_estimate(
"Qwen3-1.7B", False, 4, 50, 1024, 5.0
))
gr.Markdown("### Generation Parameters")
max_tok = gr.Slider(64, 16384, value=1024, step=32, label="Max Tokens")
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
rp = gr.Slider(1.0, 2.0, value=1.2, step=0.1, label="Repetition Penalty")
gr.Markdown("### Web Search Settings")
mr = gr.Number(value=4, precision=0, label="Max Results")
mc = gr.Number(value=50, precision=0, label="Max Chars/Result")
st = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, value=5.0, label="Search Timeout (s)")
clr = gr.Button("Clear Chat")
with gr.Column(scale=7):
chat = gr.Chatbot(type="messages")
txt = gr.Textbox(placeholder="Type your message and press Enter...")
dbg = gr.Markdown()
# Update duration estimate when relevant inputs change
model_dd.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
search_chk.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
max_tok.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
mr.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
mc.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
st.change(fn=update_duration_estimate,
inputs=[model_dd, search_chk, mr, mc, max_tok, st],
outputs=duration_display)
search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
txt.submit(fn=chat_response,
inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
model_dd, max_tok, temp, k, p, rp, st],
outputs=[chat, dbg])
demo.launch()
|